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ABSTRACT 

 

NSAT: Nucleotide Sequence Analysis Tool 

This thesis is focused on in silico comparison of genomes for the purposes of 

bacterial systematics. Its goal was to create a user-friendly, offline software package that 

provides large-scale analysis of complete or draft whole-genome sequences. We 

examined most common methods and genomic parameters used for these purposes in 

order to design the application named NSAT. The selected algorithms were reviewed in 

detail and broken down to the individual steps and mathematical formulas. The NSAT 

program uses the Average Nucleotide Identity, Tetranucleotide frequency correlation 

and GC content in percentage parameters. It was implemented in the C# programming 

language using .NET framework library and compiled to run on the Microsoft Windows 

platform. NSAT was designed with a simple graphical user interface and can be 

operated by non-bioinformatician personnel. Its functionality and result accuracy were 

tested using a set of reference sequences and found satisfactory. 
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ANIb, TETRA, DNA sequence comparison, in silico, bioinformatics 
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List of symbols and abbreviations 

 

List of symbols 

Symbol Unit Meaning 

Tm   °C Melting point at which the DNA strands separate  

∆Tm   °C Difference between the melting points  

 

List of abbreviations 

Abbreviation Meaning 

rRNA Ribosomal RNA 

DDH 

ANI 

ANIb 

ANIm 

%GC 

BLAST 

XNA 

A 

T 

G 

C 

IUPAC 

IUB 

NCBI 

      BLOSUM 

 

PAM 

HSP 

DNA-to-DNA hybridization 

Average Nucleotide Identity 

Average Nucleotide Identity based on the BLAST algorithm 

Average Nucleotide Identity based on the MUMmer algorithm 

Content of G a C bases in the examined sequence in percent 

Basic Local Alignment Search Tool 

Xeno nucleic acid 

Adenine 

Thymine 

Guanine 

Cytosine 

International Union of Pure and Applied Chemistry 

International Union of Biochemistry 

National Center for Biotechnology Information 

Blocks Substition Matrix 

 

Point Accepted Mutation 

High Scoring Pair (BLAST context) 
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TETRA 

UI 

GUI 

SZU 

LBG 

UPGMA 

IDE 

r 

WPF 

Newick 

UML 

BLASTN 

AAI 

MiSI 

MIT 

NSAT 

I/O  

DNA base 

Kilo-base – 1000 DNA bases 

Tetranucleotide frequency correlation coefficient 

User Interface 

Graphical User Interface 

Czech National Health Institute (Státní Zdravotní Ústav) 

Laboratory of Bacterial Genetics at SZU 

Unweighted Pair Group Method with Arithmetic Mean 

Integrated Development Enviroment 

Pearson`s correlation coefficient 

Windows Presentation Foundation 

New Hampshire tree format 

Universal Modelling Language 

Nucleotide BLAST 

Average Amino Acid Identity 

Miscrobial Species Identifier 

Massachusetts Institute of Technology 

Nucleotide Sequence Analysis Tool 

Input/Output 
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1 Introduction 
Systematics of bacteria has always depended on developments in other scientific 

disciplines. Following the discovery of its structure in the early 1950s, DNA has been 

gradually established as the most relevant marker used for comparative studies in 

bacterial taxonomy. Its first application was the determination of the guanine-cytosine 

content (%GC) of bacterial chromosomes, which was followed by the introduction of 

rRNA-DNA and DNA-DNA hybridization assays, and later of the sequence analysis of 

essential, house-keeping genes encoding 16S rRNA or proteins. 

Quantification of genetic relatedness by DNA-DNA hybridization (DDH) became a 

basic tool for the classification of bacteria at the species level in the 1980s. In their 

Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial 

Systematics (Moore, 1987), postulated that the phylogenetic definition of a species 

generally would include strains with approximately 70% or greater DNA-DNA 

relatedness and with 5°C or less ∆Tm  (difference in melting temperature between hybrid 

mixture and control). Skackebrandt and Goebel (STACKEBRANDT, 1994) then 

suggested that 16S rRNA sequence similarity of less than 97% between bacterial 

organisms indicates that they represent different species, whereas at 97% or higher 16S 

rRNA similarity, DDH must be used to determine whether they belong to one species. 

Thus, the combination of DDH and 16S rRNA analysis has been established as a gold 

standard for the phylogenetic classification of bacteria and become an essential 

methodical component in descriptions of novel species.     

Despite the crucial role of DDH in the developments of modern taxonomy, this 

technique suffers from methodical and methodological limitations that hamper a more 

effective and accurate extraction of the taxonomic information embedded in genomic 

DNA. DDH is technically demanding while diverse methods developed to perform it 

can yield different results, especially for lower hybridization values. However, the main 

drawback of this technique is its comparative nature. As similarity (DNA-DNA 

relatedness) values are the results of laboratory experiments, no incremental databases 

can be built. This contrasts with the situation of sequence analysis, when similarity 

values are obtained through computer-based comparison of digitized DNA sequences. 

In the aforementioned article, Wayne wrote that there was general agreement that 

the complete DNA sequence would be the reference standard to determine phylogeny 

and that phylogeny should determine taxonomy (Moore, 1987). Although this claim was 

not practically achievable until the dawn of the new millennium, the recent introduction 

and development of high-through-put, next-generation sequencing techniques have 

completely changed the situation. Nowadays, obtaining a nearly complete bacterial 

genome sequence is almost a routine procedure while techniques for the determination 

of a complete genome sequence are easily available.  
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The high speed and low cost of draft genome sequencing have motivated 

taxonomists to search for in silico methods of genome comparison that would eliminate 

the drawbacks associated with conventional DDH.  Several parameters have been 

developed to compare genome sequences for species circumscription, of which the 

average nucleotide identity(ANI) (Konstantinidis, 2005a) has been most commonly 

applied in taxonomic studies. ANI score calculation can be achieved using two different 

algorithms. One is ANI based on BLAST searches of ca. 1 kb genome fragments (that 

mirrors the fragmentation of genomic DNA during conventional DDH experiments) 

against a target genome, ANIb (Klappenbach, 2007), whereas the other one is based on 

the MUMmer algorithm, ANIm (Richter, 2009), which is of higher speed and does not 

require the artificial generation of 1 kb fragments.  Although both algorithms give 

nearly identical values in the high identity range (90–100%), their results diverge for 

less similar genomes and in these cases the ANIb algorithm appears to produce more 

accurate results (Richter, 2009). Of the two ANI variants, ANIb is currently considered 

a standard (Rosselló-Móra, 2015). 

In the last few years, several web applications allowing for the determination of 

ANI and some additional parameters have been released. The first was the JSpecies 

software (Jspecies, 2009) written in the Java programming language (Richter, 2009) and 

runs locally on Linux or Microsoft Windows.  Even though it is able to calculate ANIb, 

ANIm, tetranucleotide frequency and %GC and provides a polished graphical interface 

(e.g. to show the distributions of fragments according to ANI values), it suffers from 

several flaws. These include the inability to run MUMmer algorithm (and therefore 

calculate ANIm) under Windows, incorrect calculation of %GC and a rather low 

number of sequences (less than 20) for which mutual ANIb values can be factually 

calculated under Windows. A newer, online version of the program termed JSpeciesWS 

(JspeciesWS, 2015) (Rosselló-Móra, 2015) has solved some of these problems but still 

enables only a limited maximum number (15) of sequences to be compared, which 

precludes the comparison of larger genome sets for comprehensive taxonomic studies. 

Although other online applications that offer ANI calculation are currently available, 

they also suffer from the capacity problem. 

My motivation for this thesis arose from discussions with the scientific team of the 

Laboratory of Bacterial Genetics (National Institute of Public Health, Prague). The team 

members drew my attention to the practical limits of the presently available applications 

in the situation when the number of genomes to be compared grows quickly. It became 

apparent that there was a need for an offline bioinformatics package capable of 

computing standard genomic parameters for large sets of genomes, which would be 

flexible enough to set important variables or select genomes to be compared as well as 

provide a graphical representation of the overall similarity between sequences based on 

cluster analysis. Although none of these components is original, the planned software 

package has a clearly defined purpose and promises to fill an important methodical gap. 
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The goal of this thesis is to design, implement, test, and release a bioinformatics 

toolkit with graphic user interface, the main functionality of this application lies in 

comparing genomic parameters between the nucleotide sequences of bacterial whole 

genomes. The toolkit will be written in C# programming language as a Microsoft 

Windows application supporting Windows 7 and newer, requiring an x86 architecture 

CPU to run the program.   
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2 Current state 

2.1 DNA and its representation 

2.1.1 DNA molecule 

DNA (deoxyribonucleic acid) is a molecule present in every known living cellular 

organism. Initial discovery of the molecule dates back to late 1860s but its significance, 

function and structure was understood almost a century later. Most notably, model of its 

double helix structure was first introduced by Watson and Crick in 1953 (A. Pray, 

2008). We could argue that DNA is a prerequisite for life as we know it, although there 

are successful attempts to create a synthetic DNA-like XNA molecule, which differs 

from DNA by replacing deoxyribose in the backbone with a different sugar molecule, 

suggesting that there is a possibility of XNA based life (Edited by Markus Schmidt., 

2012).  

DNA serves as a blueprint for the entirety of the organism in question, guiding its 

development from single cell to its final form. Its structure consists of four different 

nitrogen bases: adenine (A), cytosine (C), guanine (G) and thymine (T), which are 

connected by a sugar (deoxyribose)-phosphate backbone that binds them into a dual 

strand structure called the double helix. These molecules form two sets of base pairs: A-

T and G-C. Each base from the base pair is part of an opposing strand (Zvelebil, 2008) 

   Figure 2 G-C base pair (G-C DNA bae pair, 2010) 

   Figure 1 A-T base pair (A-T DNA base pair, 2007) 
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While A-T base pair has two hydrogen non-covalent bonds as evident from figure 

1, the G-C pair has three non-covalent hydrogen bonds (figure 2). This makes the bond 

between G and C stronger and therefore harder to break; this fact is important for 

several reasons into which we will delve later on. At the same time, both types of bonds 

are still relatively weak as they are non-covalent, therefore much less energy is required 

to destabilize and break the non-covalent bonds between the two parts of the helix 

(horizontally) than it is needed to break apart individual strands (vertically).  

 

 

This fact is important during transcription and translation, because the enzymes 

participating in those processes split the strands effectively by “unzipping” the double 

helix (Zvelebil, 2008). 

During the process of transcription, complementary DNA strands are separated by 

an enzyme called helicase and transcribed by DNA-dependent RNA polymerase into 

RNA (ribonucleic acid), which is a molecule similar to DNA. RNA differs from DNA in 

(i) replacing the T base with uracil (U), (ii) replacing deoxyribose with ribose and (iii) 

being single stranded.  

Figure 4 DNA double helix chemical structure 
(DNA structure detail, b.r.) 

Figure 3 DNA double helix structure (DNA 
structure detail, b.r.) 
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DNA-dependent RNA polymerase reads the so-called anti-coding strand from 3’ to 

5’ end to achieve RNA strand in 5’ to 3’ orientation. The coding strand in DNA is 

defined as the strand corresponding to translated RNA sequence with U replaced with T 

(Zvelebil, 2008). 

The translation process enables the translation of the messenger RNA (mRNA), 

which is the type of RNA transcribed from a protein coding gene. A particular gene is 

considered expressed once it is used to synthetize a functional product; this product can 

¨í (dividing one DNA molecule into two by splitting its complementary strands and 

recreating their respective complements) followed by DNA transcription and RNA 

translation processes along with their inner workings is referred to as “Central dogma of 

molecular biology“ (Figure 5). 

 

 

2.1.2 DNA sequence 

The structure of a DNA (or nucleotide) sequence is defined by an order in which 

individual bases appear in a DNA strand (either strand can be used since they are 

complementary) from the 5’ end, which is the end of the strand with a phosphate group 

on the 5th carbon of the deoxyribose molecule, to the 3’ end, the one with a free 

hydroxyl group on the 3rd carbon of the deoxyribose molecule (Figure 6) (Zvelebil, 

2008). 

Figure 1 Central dogma of molecular biology (Central dogma of molecular 
biology, 2013) 
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This sequence is traditionally represented as a string of characters using G, C, A or 

T as abbreviations of respective base pairs and other characters for different levels of 

uncertainty (IUPAC-IUB Comm. on Biochem. Nomencl, 2002). 

 

2.1.3 FASTA format in bioinformatics 

In bioinformatics, sequences are most often saved as files in the FASTA format, 

which contains a sequence string in text format, with a header that provides an 

identification of the given organism. The header usually consists of the species name 

and designation of the genome or its part. Furthermore, the multi FASTA format is often 

used; it combines more than one FASTA records with corresponding headers in one file. 

This format is typically used with incomplete genomes (which still represent vast 

majority of genomes in the NCBI database) (FASTA format - NCBI, b.r.). In the 

following example, you can see a FASTA file with a header containing the accession 

number for the NCBI nucleotide database along with a species name and strain 

designation. 

 

Figure 2 DNA orientation (DNA 3' 5' end, 2013) 
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Example in Figure 7 illustrates an ungapped sequence, which is not always the case. 

Many sequences end up with an incomplete sequence with possible errors, gaps or 

unclear bases. In a gapped sequence, gaps are substituted with letter “N” (one per one 

missing base) (Figure 8). 

 

The amount of characters inserted should be the same as the amount of 

undetermined bases or correspond to gap length.As the actual gap length is not always 

known, it is common practice to use a string of 100 N characters instead (FASTA 

format - NCBI, b.r.). There are other characters that can be used to specify the level of 

uncertainty; these are listed in Table 1 (IUPAC-IUB Comm. on Biochem. Nomencl, 

2002). Note that the X (standing for A, G, C or T) character is rarely used. 

 

 

 

 

 

>CP014266.1 Acinetobacter baumannii strain Ab421_GEIH-
2010 genome 

TGTGGATAACTTGGGTAGAATGGCGACCCCTTCTCATCAGGAAGGGTTAATCTTT
AAATGATTTGAATTTAAAACGCAGACATAGGGGATACACATGCTTTGGACAGACTGCTT
AACTCGCTTGCGACAAGAGCTCTCTG 

ATAACGTCTTTGCGATGTGGATTCGCCCTTTAGTAGCTGAAGAAGTAGAGGGGAT
ACTACGTCTCTATGC 

TCCTAATCCTTATTGGACGCGTTATATTCAAGAGAATCATTTAGAGTTAATTTCT
ATATTGGCTGAACAA 

 

>CP014266.1 Acinetobacter baumannii strain Ab421_GEIH-
2010 genome 

TGTNNNNNACTTGGGTNNNNNNGCGACCCCTNNNNATCAGGAAGGGTTAATCTTN
NAATNNTTNGAATNNAANNNGCAGACATAGGGGNTACACATGCTTTGGACAGACTGCTT
AACTCGCTTGCGACAAGAGCTCTCTG 

ATAACGTCTTTGCGATGTGGATTCGCCCTTTAGTAGCTGAAGAAGTAGAGGGGAT
ACTACGTCTCTATGC 

TCCTAATCCTTATTGGACGCGTTATATTCAAGAGAATCATTTAGAGTTAATTTCT
ATATTGGCTGAACAA 

 

Figure 3 Ungapped sequence in FASTA format 

Figure 4 Sequence with gaps in FASTA format 
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G Guanine  

A Adenine 

T Thymine 

C Cytosine 

R A or G (Purine) 

Y C or T (Pyrimidine) 

M A or C (Amino) 

K G or T (Ketone) 

S C or G (Strong) 

W A or T (Weak) 

H Not  G 

B Not A 

V Not T 

D Not C 

N Any (Undetermined) 

Table 1 FASTA allowed characters 

In this thesis, DNA sequences used will be presented exclusively in FASTA format, 

which will also serve as the only allowed input format for the resulting application. 

 

2.2 Comparative genomics 

 

2.2.1 Significance of bioinformatics and computational biology for 
sequence data processing 

Due to tremendous increase in speed, reliability and consistency of DNA (and 

RNA) sequencing, the increase in available sequence data is astronomical even when 

looking back only a few years (Heather, 2016). With advent of third generation 

sequencing, it is possible to obtain whole-genome sequences in matter of hours at a 

relatively low cost and with low enough error rate (Land, 2015). 

The resulting situation sees an exponentially increasing amount of unprocessed 

sequence data, which on their own have no value, therefore it is necessary to interpret 
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them and understand their significance. This is where computational biology and its 

tools come in.  

Inception of comparative genomics with advent of new technologies such as DNA 

sequencing, various bioinformatics methods and algorithms for sequence comparison 

and analysis has led to previously unimaginable advances in speed and efficiency of 

taxonomic classification. One of the most influenced organism groups was the bacteria 

domain, which also happens to be quantitatively the largest domain, with estimated 

number of distinct species between hundred billion and one trillion (Locey, 2016). An 

estimation that is somewhat supported by new bacteria species and subspecies being 

discovered on regular basis.  

This thesis is focusing on the application of computational biology on bacterial 

DNA sequences and determining their relatedness by computing the selected genomic 

parameters, also known as comparative genomics. This is a universal approach not 

limited to bacteria domain, instead it is applicable to any living organism and even 

viruses (RNA can be studied and compared in similar fashion). It is important to note 

that phylogeny and taxonomy by extension is just one of many possible applications of 

computational biology and bioinformatics. 

 

 

2.2.2 DNA comparison methods in vitro 

 

DNA-DNA Hybridization 

One of the first methods for determining the relatedness of given organisms based 

on their DNA structure and the only method not based not requiring sequence data 

knowledge that is still relevant today is DNA-DNA hybridization (DDH). 

The process starts with labelling query DNA using a photoreactive or radioactive 

substance. The query DNA is then mixed with the target DNA and heated up to a 

temperature that results in breaking the hydrogen bonds between bases and therefore 

separating both DNA molecules into single strands. This melting temperature is noted as 

𝑇 . (Rosselló-Móra, 2011). 𝑇  can be further lowered by adding different chemicals to 

the mixture such as formamide (Bouvier, 2003). 𝑇  as a measurement of DNA stability 

directly correlates with %GC content, since there are three hydrogen bonds in G-C base 

pair as opposed to only two in A-T pair. As a result, more energy is required to break 

the bonds in GC pairs, therefore substituting AT with GC results in raising 𝑇  for the 

DNA molecule in question. 
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Mixture is then cooled back to a temperature that allows strands to re-join. This 

results in creation of DNA hybrids where a double helix is formed with one strand from 

query and one strand from target DNA. The relative amount of hybrids created is 

expressed in percent and is one of the two requirements for determining whether or not 

query and target DNA represent the same species with a cut-off at 70% (Moore, 1987). 

In the next step, the mixture is reheated to point of hybrid strand separation. 

Difference between 𝑇  of a target sequence and 𝑇  of the hybrids (∆𝑇 ) is the second 

parameter to determine relatedness at the species level, with the intraspecies values of 

≥5 °C (Moore, 1987). 

Disadvantages of this method stem from the need for a lot of wet work with 

expensive and highly specialized lab equipment. But its main flaws are the inability to 

exactly replicate conditions in which the experiment has been performed (which can 

lead to skewed and inaccurate results) and an impossibility to create incremental 

databases. 

 

2.2.3 Sequence based DNA comparison methods (in silico) 

There are two options when it comes to sequence comparison.  

First one is to use parameters that are calculated for sequence A and compare those 

values with the same values calculated for sequence B. An example is %GC.  

The second one is to calculate pairwise parameters that are relative and pertain only 

to a given pair of sequences. An example of this is ANI. 

The big advantage of the first case is that all we need to know are parameter values 

for A and B and we can draw comparison from this information with a simple 

calculation. In the second case, we need to calculate the parameter for each unique pair. 

This in turn leads to an exponential increase in required computing resources. For 

example, when we are trying to determine relatedness for a given dataset, we need to 

calculate the selected parameter for every unique pair of sequences. Of course, the 

second method tends to be more accurate, since when drawing conclusion from a single 

parameter, a great loss of information occurs as the sequence in question has been 

reduced and simplified to be presented as a single value or a set of values. 

The following parameters are the most important ones used in comparative 

genomics and regarded as the gold standards for taxonomic purposes.   
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GC percentage 

%GC is a percentage measurement of amount of G-C base pairs relative to the total 

amount of base pairs, that are conclusive in regard to being G or C, or not. This means 

that the only characters used for this calculation are A, C, T, G, S (representing G or C) 

and W (r. A or T). All other characters like Ns for gaps and other more specific 

uncertainty symbols are therefore omitted, since their inclusion would skew results. The 

resulting formula for calculating %GC in any sequence in proper FASTA format is: 

 

∑ 𝐺 + ∑ 𝐶 +  ∑ 𝑆

∑ 𝐴 + ∑ 𝐶 + ∑ 𝑇 + ∑ 𝐺 + ∑ 𝑊 + ∑ 𝑆
× 100 

 
In an ungapped nucleotide sequence with all bases conclusively identified (only A, 

C, T or G), this is an equivalent to: 

 

∑ 𝐺 + ∑ 𝐶

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔ℎ𝑡
× 100 

 

While this value has been shown to be very similar in closely related bacteria, it can 

also be similar in phylogenetically very distant bacteria (Nishida, 2012). For this reason 

(low information complexity), %GC cannot be used alone as a relatedness defining 

genomic parameter although it is still used to supplement other, more robust parameters 

or to serve as a preliminary parameter to decide whether further genome analysis should 

be performed. 

 

 

Sequence alignment and BLAST algorithm 

Sequence alignment refers to a way of arranging two sequences (DNA, RNA or 

protein) in a way to overlay and compare regions of similarity. The idea behind 

sequence alignment is that these aligned regions will help to determine functional and/or 

evolutionary relationship between sequences, therefore estimating their relatedness and 

functional similarity. 

When it comes to the algorithms used to align two sequences there are two main 

families of them – algorithms based on dynamic programming and heuristic algorithms.  
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2.2.3.1.1 Dynamic programming algorithms 

Dynamic programming is a method that solves complex problems by breaking them 

down into in to simpler sub-tasks often utilizing recursion. A proper dynamic 

programming algorithm is guaranteed to find an optimal (best) solution, which is also 

the main advantage. Their main disadvantage lies in being compute heavy. 

 

2.2.3.1.1.1 Needleman-Wunsch algorithm 

Needleman-Wunsch algorithm is one of the first algorithms that were used for 

sequence comparison (Needleman, 1970). This is a global alignment algorithm, which 

means that it aligns two sequences in their entirety – from beginning to the end. As such 

it is suited for aligning two closely related (highly similar) sequences. 

Since Needleman-Wunsch is a dynamic programming algorithm, it breaks down the 

alignment problem into smaller and simpler issues and then reconstructs the solution. 

The process itself is best demonstrated on an example: 

1. Consider two short nucleotide sequences: 

I. CGTGAATTCAT; the first sequence with the length(n) of 11 bases. 

II. GACTTAC; the second sequence with the length(m) of 7 bases. 

2. Construct a matrix with dimensions of (n+1)×(m+1). One additional field is 

added to each sequence because we need to consider aligning with a gap at the 

start. Resulting matrix will look like this: 

X _ C G T G A A T T C A T 

_             

G             

A             

C             

T             

T             

A             

C             

Table 2 Needleman-Wunsch blank 

 

 

3. Determine a scoring schema – this can be user defined and will assign different 

scores if: 
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I. Both nucleotides match (ex. A – A). In this case our score will be +1. 

II. Nucleotides do not match (ex. A – G). Our scoring system will assign -1 

to a mismatch. 

III. We align a base in sequence A with a gap inserted into sequence B or 

vice versa. This is called the gap open penalty and in our example is set 

to -1.  

  

Why would we do this? This is supposed to represent and indel – a 

type of genetic mutation that results in deleting or inserting a base 

from/into the genome. Since the idea behind sequence alignment is 

comparing equivalent regions, we need to consider this case. 

 

4. Initialize the matrix and fill the first row and column. First cell (1;1) is assigned 

0, since this corresponds to starting the alignment with one gap at the start of 

each sequence, which is the same as starting from the beginning with no gaps. 

The rest of the scores in the first row and the first column represents the number 

of gaps inserted. For example, to align the third base of the A sequence with the 

first base of the B sequence, we need to insert two gaps at the beginning of the 

second sequence, therefore cell (1;3) has the value of -2. 

X _ C G T G A A T T C A T 

_ 0 -1  -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 

G -1            

A -2            

C -3            

T -4            

T -5            

A -6            

C -7            

 

Table 3 Needleman-Wunsch first row/column 

5. Fill the matrix. This is a crucial step, now we will fill the rest of the matrix 

starting from the top left corner based on values of the three neighbouring cells 

(left, left diagonal and top). We are looking for the highest assumed score out of 

the three. These assumed scores are obtained by: 

I. Adding the match/mismatch score (further denoted as S) to the left 

diagonal cell value. 
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II. Adding (it should always be 0 or negative) the gap penalty (further 

denoted as W) to the left cell value. 

III. Adding the gap penalty to the top cell value. 

 

The mathematical formula for filling each remaining cell is: 

 

𝑀 , = 𝑀𝑎𝑥(𝑀 , + 𝑆 , , 𝑀 , + 𝑊, 𝑀 , + 𝑊) 

 

where  𝑀 ,   is the field in question with its respective coordinates. 

 

After determining the maximum value, we will use a pointer to illustrate 

from which field did the value originated. This information is very important. 

Quite often, there will be two or even three same (maximal) values. In this case, 

we will use multiple pointers to all the fields the maximum value was 

extrapolated from. 

X _ C G T G A A T T C A T 

_ 0 -1  -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 

G -1 -1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 

A -2 -2 -1 -1 -2 -1 -2 -3 -4 -5 -6 -7 

C -3 -1 -2 -2 -2 -2 -2 -3 -4 -3 -4 -5 

T -4 -2 -2 -1 -2 -3 -3 -1 -2 -3 -4 -3 

T -5 -3 -3 -1 -2 -3 -4 -2 0 -1 -2 -3 

A -6 -4 -4 -2 -2 -1 -2 -3 -1 -1 0 -1 

C -7 -5 -5 -3 -3 -2 -2 -3 -2 0 -1 -1 

Table 4 Needleman-Wunsch filled 

6. Traceback. Now we need to determine the most optimal alignment (or 

alignments, since there can be more than just one). This step is simple – we 

follow previously created pointers (arrows) from the right bottom cell of the 

matrix to the right top cell. Rules for different arrow orientation are following: 

I. Diagonal arrow signifies match or mismatch. This means that in the case 

of a diagonal arrow, bases are aligned. For example, in our matrix the last 

bases of both sequences (T and C) are aligned since there is variation in 

every traceback, because there is only a diagonal arrow originating from 

the field of their intersection (bottom right). 

II. Horizontal and vertical arrows represent indels. This means that a gap is 

added to the appropriate sequence. Horizontal arrow adds a gap to the top 
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or horizontal sequence, while vertical one adds a gap to the left side or 

vertical sequence. 

III. In the case of multiple arrows originating from a single cell, we are left 

with two or more alignments. To determine the best alignment or 

alignments, we will score the traceback route – again the scoring schema 

here can be user defined. 

IV. Similarity matrices are a special case of a scoring schema. These allow 

to specify different scores for alignments of different bases. For example, 

a G-G pairing can be given a high score of 5, while an A-A pair will only 

be awarded 2. The two most known and used groups of scoring matrices 

BLOSUM and PAM (Pearson, 2002) are made for protein sequence 

alignment. However, such matrices can also be useful when dealing with 

nucleotide sequences. Reasoning behind this is that some mutations are 

more likely to occur than others – in DNA the G-T mispair is the most 

common, since the chemical bonds between bases can rearrange in a way 

that makes the pairing almost as energy efficient as the “standard” pairs 

(Kimsey, 2018).  

V. Gap extension penalty is a special case of gap penalty that is used when 

there are gaps longer than one base. In case like this, it is not optimal for 

the penalty to grow linearly, instead gap extension penalty is usually 

lower than gap open penalty.  

Traceback route for our example is denoted with yellow arrows in the 

following table. 

X _ C G T G A A T T C A T 

_ 0 -1  -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 

G -1 -1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 

A -2 -2 -1 -1 -2 -1 -2 -3 -4 -5 -6 -7 

C -3 -1 -2 -2 -2 -2 -2 -3 -4 -3 -4 -5 

T -4 -2 -2 -1 -2 -3 -3 -1 -2 -3 -4 -3 

T -5 -3 -3 -1 -2 -3 -4 -2 0 -1 -2 -3 

A -6 -4 -4 -2 -2 -1 -2 -3 -1 -1 0 -1 

C -7 -5 -5 -3 -3 -2 -2 -3 -2 0 -1 -1 

Table 5 Needleman-Wunsch traceback 

7. We can see that there is one cell with two pointers originating from it, thus 

enabling two branching paths, that represent two equally viable alignments (gap 

is denoted by X): 

I. C G T G A A T T C A T 
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X X X G A C T T X A C 

II. C G T G A A T T C A T 

X G X X A C T T X A C 

To determine the most optimal alignment, we will be using a scoring 

schema of +5 for match, -1 for mismatch and -2 for gap open and -1 for gap 

extension. This translates to score of 14 for both the first and second alignments. 

Therefore, both possible alignments are equally viable. (Bioinformatics and 

molecular evolution, 2005) 

 

2.2.3.1.1.2 Smith-Waterman  

The main difference between Needleman-Wunsch and Smith-Waterman algorithms 

stems from the fact that the former compares two sequences using global alignment, 

while the latter uses local alignments to compare regions of high enough similarity. 

Smith-Waterman algorithm is a dynamic programming algorithm and works in 

similar fashion to Needleman-Wunsch, any important differences will be accentuated in 

the following step-by-step breakdown. The same two sequences will be used for 

comparison: 

1. Consider two short nucleotide sequences: 

I. CGTGAATTCAT; the first sequence with the length(n) of 11 bases. 

II. GACTTAC; the second sequence with the length(m) of 7 bases. 

 

2. Construct a matrix with dimensions of (n+1)×(m+1). One additional field is 

added to each sequence because we need to consider aligning with a gap at the 

start. The resulting matrix will look like this: 

X _ C G T G A A T T C A T 

_             

G             

A             

C             

T             

T             

A             

C             

Table 6 Smith-Waterman blank 
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3. Initialize the matrix. First row and first column are filled with zeros: 

X _ C G T G A A T T C A T 

_ 0 0 0 0 0 0 0 0 0 0 0 0 

G 0            

A 0            

C 0            

T 0            

T 0            

A 0            

C 0            

Table 7 Smith-Waterman first row/column 

4. Determine scoring schema. Our scoring schema will be +5 for a match and -3 for a 

mismatch. Match/mismatch is again denoted as S. For gap penalty, we will use a 

value of -4. Again, this schema can be changed based on different scoring tables or 

personal preference, however mismatch and gap penalty should always be negative.  

 

 

5. Fill the rest of the matrix. 

The formula for calculating values of the remaining cells is: 

 

𝑀 , = 𝑀𝑎𝑥(𝑀 , + 𝑆 , , 𝑀 , + 𝑊, 𝑀 , + 𝑊, 0) 

 

The main difference compared to Needleman-Wunsch lies in adding 0 into 

the formula. In practice, this ensures that there will be no cells in the matrix that 

contain a negative value. The aforementioned distinction is what enables the 

local alignment rather than global, since cells that would otherwise have a 

negative score signify that there is no similarity between the sequences up to this 

point. This cell is then set to 0 to ensure that it will have no effect on its 

successors, which will allow the alignment to start from any position. 
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X _ C G T G A A T T C A T 

_ 0 0 0 0 0 0 0 0 0 0 0 0 

G 0 0 5 1 5 1 0 0 0 0 0 0 

A 0 0 1 2 1 10 6 2 0 0 5 1 

C 0 5 1 0 0 6 7 3 0 5 1 2 

T 0 1 2 6 2 2 3 12 8 4 2 6 

T 0 0 0 7 3 0 0 8 17 13 9 7 

A 0 0 0 3 4 8 5 4 13 14 18 14 

C 0 5 1 0 0 4 5 2 9 18 14 15 

Table 8 Smith-Waterman filled 

6. Traceback. To start tracing the alignment, we first need to find the cell or cells 

with the highest score in the matrix. Traceback starts from this cell; if there are 

multiple occurrences, there will be two or more possible alignments. Alignment 

ends with a pointer to zero. In the given example, there are two cells with value 

of 18 which is the highest score in the matrix. Therefore, there will be, at the 

very least, two possible alignments. 

X _ C G T G A A T T C A T 

_ 0 0 0 0 0 0 0 0 0 0 0 0 

G 0 0 5 1 5 1 0 0 0 0 0 0 

A 0 0 1 2 1 10 6 2 0 0 5 1 

C 0 5 1 0 0 6 7 3 0 5 1 2 

T 0 1 2 6 2 2 3 12 8 4 2 6 

T 0 0 0 7 3 0 0 8 17 13 9 7 

A 0 0 0 3 4 8 5 4 13 14 18 14 

C 0 5 1 0 0 4 5 2 9 18 14 15 

Table 9 Smith-Waterman traceback 

(Note that we could start another alignment from the second highest value 

and another from the third highest etc. The resulting alingments are inferior in 

their optimality but under certain conditions can provide relevant information) 

7. Green arrows represent the alignment start while yellow ones continue the 

traceback.  

The orange arrow represents the pointer to zero that ends the local 

alignment. The pointer significance is the same as in the case of Needleman-

Wunsch – a diagonal pointer represents aligning of the intersecting bases, while 

horizontal and vertical ones add a gap to the respective sequence.  
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As we can clearly see, we are left with two possible alignments. To further 

determine the most optimal one, we will again score both alignments this time 

with the same scoring schema that was used to construct the matrix (+5 for a 

match, -3 for mismatch, -4 gap penalty).  

 

I. G A A T T C A 

G A C T T X A 

II. G A A T T X C 

G A C T T A C 

 

Resulting score is 18 for both alignments, which again signals that both are 

the most optimal. (Bioinformatics and molecular evolution, 2005) 

 

2.2.3.1.2 BLAST 

BLAST or Basic Local Alignment Tool is the most used application for sequence 

searching and alignment. Its popularity stems from the fact that it uses a heuristic 

method to approximate, with precise enough results, the Smith-Waterman algorithm all 

the while making it over 50 times faster than the actual algorithm. 

While Smith- Waterman algorithm would be the preferred choice since it 

guarantees to find the optimal match between two sequences based on the selected 

scoring matrix (basic matrix “rewards” a nucleotide match with increase the total score 

by one and penalizes mismatch by decreasing it by one), BLAST due to its heuristic 

nature does not.  

The problem with the Smith-Waterman algorithm lies in its high computational 

cost. The time and space complexity of the original algorithm is 𝑂(𝑎 𝑏) and 𝑂(𝑎𝑏), 

respectively, where a and b are the lengths of two sequences used for the alignment 

(Smith, 1981). Even though the algorithm has been since optimized for time complexity 

of 𝑂(𝑎𝑏) (Altschul, 1986) and space complexity of 𝑂(𝑎), where a represent length of 

the shorter sequence (Myers, 1988), it is still not feasible to use with larger datasets. 

BLAST algorithm works on a “seed and grow” principle, which means that instead 

of trying to align one sequence to another as whole, the algorithm looks for short 

regions that are very similar between the two sequences. In the case of BLAST, the 

distinction between target and query sequences becomes more important since swapping 

these roles slightly, but noticeably influences the result, the reason for this will become 

more apparent in the following algorithm description: 

1. (Optional) Remove regions of low complexity 
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This process (also called dedusting in nucleotide sequences) uses external 

programs DUST (for DNA) and SEG (for protein) to remove regions of low 

complexity consisting of long single base repeats or repeated patterns. These 

regions will make the high complexity ones less significant and therefore can 

impact the results in a negative way (reduce accuracy) while in most cases, more 

complex regions are significantly more important for sequence comparison (in 

DNA, they are much more likely to be functional).  

 

2. Determine initial seed length 

The length of the initial seed is given by the parameter Word length (k) – 

one of the user configurable BLAST parameters. In the context of DNA 

sequences, a word size of 11 is commonly used, while for protein lower values, 

starting at three are usually used.  

 

3. Create a list of unique k letter words 

The next step is to compile a list of all unique k letter words from the query 

sequence. This is achieved by reading the query sequence starting on the first 

base and ending on the kth base (where k is the word length), in the next step 

reading starts from the second base and this process is repeated until the end of 

the sequence is reached and the list contains all the unique k letter words that 

exist within the give sequence.  

 

4. Score the pairs and create HSP list 

After successfully creating the unique k letter word list, its members are 

compared with all the possible k letter words (for DNA sequence there is 11  of 

them) and scored according to a scoring matrix like BLOSUM 62 for protein 

sequences. This is where another parameter Threshold T is used. Instead of 

returning list of all possible pairs and their respective scores, only “High Scoring 

Pairs” (HSPs) – pairs with score higher than value of T –  are returned.  

HSPs are in this context x, y pairs, where a is an existing k-letter word in 

the query sequence and y can be any of the possible k-letter words. Their score is 

based on their similarity, which is determined by aligning x with y in an 

ungapped alignment and summing user defined match/mismatch scores for all k 

bases. Threshold T is then applied to the resulting score, if their score is greater 

or equal x, y pair in question is considered a HSP.  

 

HSP creation is repeated for every unique k letter word from the query 

sequence; the y words from all HSPs are then taken and saved into a list as 

potential seeds.  
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5. Seeding 

Algorithm then enters the seeding phase searching for exact k letter word 

matches between the potential seed list and the database (target sequence). These 

matches between query sequence and database are designated as seeds.  

 

6. Seed extension 

After seeding is concluded, BLAST algorithm starts to extend the initially 

aligned seeds and depending on set gap penalty, mismatch penalty and rewards 

for HSP matches or connecting with another seed the alignment score increases 

or decreases. The extension will stop when the cumulative score for the 

alignment in question drops below T level. 

 (Mclean, 2004) (Altschul, 1990) 

 

Resulting alignments can be formatted to one of many BLAST applications output 

formats and further analysed and interpreted (BLAST® Command Line Applications 

User Manual, 2008). 

 

Average Nucleotide Identity based on BLAST (ANIb) 

Average nucleotide identity is a genomic parameter created to simulate DNA-DNA 

hybridization in silico (Richter, 2009). The implementation in this thesis is based on the 

BLAST algorithm described in the previous section. 

The implementation of ANI based on BLAST requires some extra steps; the exact 

methodology was described by Klappenbach et al. as follows: 

“The genomic sequence from one of the genomes in a pair (‘the query’) was cut 

into consecutive 1020 nt fragments. The 1020 nt cut-off was used to correspond with the 

fragmentation of the genomic DNA to approximately 1 kb fragments during the DDH 

experiments. The use of different cut-offs (e.g. smaller fragments) did not notably modify 

our results (data not shown). The 1020 nt fragments were then used to search against 

the whole genomic sequence of the other genome in the pair (‘the reference’) by using 

the BLASTN algorithm the best BLASTN match was saved for further analysis. 

The BLASTN algorithm was run using the following settings: X=150 (where X is the drop-

off value for gapped alignment), q=−1 (where q is the penalty for nucleotide mismatch) 

and F=F (where F is the filter for repeated sequences); the rest of the parameters were 

used at the default settings. These settings give better sensitivity than the default settings 

when more distantly related genomes are being compared, as the latter target sequences 

that are more similar to each other. 

…. 
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The ANI between the query genome and the reference genome was calculated as the 

mean identity of all BLASTN matches that showed more than 30 % overall sequence 

dentity (recalculated to an identity along the entire sequence) over an alignable region 

of at least 70 % of their length. This cut-off is above the ‘twilight zone’ of similarity 

searches in which an inference of homology is error prone because of low levels of 

similarity between aligned sequences. Therefore, we can assume that only homologous 

DNA fragments were considered in our calculations.” (Klappenbach, 2007) 

 

Based on the cited methodology the step-by-step process for computing the ANIb 

values in a pairwise comparison is: 

1. Load the two sequences A as the query and B as the target or database. 

2. Chop the A (query) sequence into 1020 base fragments (the last fragment will 

likely end up shorter). 

3. BLAST every fragment of A one by one (ideály concurrently using 

multithreading) against the complete B (target) sequence using the parameters 

specified above. 

4. Check the results: 

I. If the length of the resulting alignment is at least 70% of the overall 

fragment length (fragment length divided by the length of the alignment 

is at least 0.7). 

II. If the % nucleotide identity recalculated to the length of the whole 

fragment is above 30% (number of matched nucleotides divided by the 

fragment length is above 0.3). ( 

Note that the selected approach is one of the two possible interpretations. 

The other would be dividing the length of the alingment by the fragment 

length. This would be a slightly less strčit in case of a gapped alignment 

(very common). Ultimately the authors educated opinion is that the 30% 

cut off is very low as is and therefore is better to use the stricter method. 

 

5. Every fragment that fulfils these two conditions will be used to calculate the 

ANIb value by calculating the total mean of their identity percentages. 

6. Repeat all of above only with the roles for A and B reversed. 

7. Calculate the mean of the two resulting values to get the bi-directional ANIb 

value for the examined sequence pair. 

 

ANIb score corresponding to a DDH value of 70% and therefore to the boundary 

for determining whether are the two examined prokaryotic organisms part of the same 

species, has been set (based on extensive experimentation) between 94-96%. It has been 

proven further that ANI score tightly correlates with DDH results for phylogenetic 



34 

 

purposes and therefore is a full-fledged alternative to DDH, while superseding it by 

eliminating almost all of its drawbacks such as high cost, time required to perform the 

experiment, man-hour demand and other uncontrollable factors that can potentially 

influence results (Richter, 2009). 

It is worth noting that another option for calculating ANI score is available based on 

the MUMmer algorithm, that boasts a speed advantage over ANIb with only a very 

slight decrease in accuracy when comparing organisms that appear to diverge at the 

species level, (≈ANI score of 90% and lower). 

ANIb is presently regarded as the new “gold standard” for prokaryotic species 

definition and it is quickly becoming the most used parameter for taxonomic and 

phylogenetic studies (Rosselló-Móra, 2015). 

 

 

 

Tetranucleotide (oligonucleotide) frequency correlation] 

Oligonucleotide frequency in each sequence is determined by the number of times a 

unique oligonucleotide appears in the sequence. Unique oligonucleotide is defined as a 

distinct nucleotide sequence of length k, where k=1 for mono nucleotide (single A, C, T 

or G base), k=2 for dinucleotide (pairs like GC, TG, GT, AT etc.), k=3 for trinucleotide 

(GCT, TGC, AAA, CGC…), k=4 for tetranucleotide (AGACT, TTGA,CGCT, AAAG..) 

and k=n for n-nucleotide.  

While the fact that oligonucleotides carry species-specific signal was 

experimentally proven, suggesting that different species are biased towards under and 

over representing different oligonucleotides and this profile is indeed species specific, 

the reasoning behind this is still unknown. It has also been demonstrated that longer 

oligonucleotides carry more of this signal than the shorter ones. Calculation of the 

tetranucleotide frequencies and their correlation within examined dataset seems to 

provide a good balance between performance cost and strength/reliability of the 

phylogenetic signal. (Richter, 2009).   

Tetranucleotide correlation coefficient between two DNA sequences is calculated 

using method published by Teeling et al (Teeling, 2004), which itself is derived from 

more universal method for calculating expected oligonucleotide frequency via Markov 

models published by Schbath et al. (SCHBATH, 1995).  

First step was to split the examined sequences to 40 kilobase (4000 bases) long 

fragments designated as fosmids.  
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“In brief, all fragments were extended with their reverse complements. The 

observed frequencies of all 256 possible tetranucleotides and their corresponding 

expected frequencies were computed for these sequences. The differences between 

observed and expected values were transformed into z-scores for each tetranucleotide. 

The similarity between two fosmids was assessed by calculating the Pearson correlation 

coefficient for their 256 tetranucleotide-derived z-scores.” (Teeling, 2004) 

Expected tetranucleotide frequencies are computed by the maximal order Markov 

model from dinucleotide and trinucleotide frequencies using the following formulas: 

 

𝐸(𝑛1𝑛2𝑛3𝑛4) =
𝑂(𝑛1𝑛2𝑛3) × 𝑂(𝑛2𝑛3𝑛4)

𝑂(𝑛2𝑛3)
 

 

𝑍(𝑛1𝑛2𝑛3𝑛4) =
𝑂(𝑛1𝑛2𝑛3𝑛4) − 𝐸(𝑛1𝑛2𝑛3𝑛4)

𝑣𝑎𝑟(𝑂(𝑛1𝑛2𝑛3𝑛4))
 

 

𝑣𝑎𝑟 𝑂(𝑛1𝑛2𝑛3𝑛4)  = 

= 𝐸(𝑛1𝑛2𝑛3𝑛4) ×
[𝑂(𝑛2𝑛3) − 𝑂(𝑛1𝑛2𝑛3)] × [𝑂(𝑛2𝑛3) − 𝑂(𝑛2𝑛3𝑛4)]

𝑂(𝑛2𝑛3)
 

 

Where E signifies expected frequency of the given n-nucleotide, O stands for 
observed frequency of the given n-nucleotide, var is the variance and Z is the z-score 
used to represent the divergence between the expected and observed values. The n1 to 
n4 stand for the particular bases in the tetranucleotide in question. 

Determining whether two fosmids exhibit similar nucleotide over and under 
representation patterns is realized via calculating the Pearson correlation coefficient for 
the corresponding z-scores using this formula: 

𝑝 , =
∑ 𝑋𝑌 − ∑ 𝑋 × ∑ 𝑌

∑ 𝑋 − (∑ 𝑋) × ∑ 𝑌 − (∑ 𝑌)
 

 

Where the X values are the z-scores of the 256 possible tetranucleotides computed 
for the first fosmid and the Y values are the z-scores for the second one. 

 

Resulting Pearson’s coefficient has been shown to greatly exceed simple GC 

content calculation when it comes to determining species relatedness (Teeling, 2004). 

Its values of >0.99 can quite reliably indicate ANI score of 95-96% or higher and by 

extension species circumscription, however a considerable number of outliers has been 

reported, where tetranucleotide correlation values suggest both significantly lower and 

higher relatedness than ANI scores. Therefore, we can conclude that tetranucleotide 
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correlation score, while providing much higher accuracy for phylogenetic analysis than 

simple %GC calculation, is still not as reliable as ANI score for the same purpose. 

Nevertheless, since its performance cost is significantly lower than that of ANIb it can 

be used for preliminary analysis of large datasets and due to its decent accuracy even as 

an accompanying/control parameter for ANI-based phylogeny (Richter, 2009).  

It is important to note that for the purposes of this program the TETRA value will 

be counted without the artificial fosmid division. This is because, our application differs 

from Teeling et al. in the fact that we are not interested in the intra-genome values, only 

inter-genome ones. Furthermore, we will often end up using incomplete genomes, 

unlike the exclusively whole genome sequences used in the referenced study. For these 

reasons the division to 40kb fragments is not beneficial or useful for our purposes.  

All of the above translates to the following step-by-step process used to determine 

the pairwise TETRA values: 

1. Load the two sequences – A and B and extend both by their complementary 

strains. 

2. Calculate the z-scores using the previously detailed formula for all 256 

tetranucleotides in each sequence. 

3. Calculate the Pearson correlation coefficient between the z-scores of A and B. 

 

2.2.4 Need for an offline and user-friendly application 

 

In previous paragraphs, we went through the most used (presently and in the past) 

genomic parameters for phylogenetic analysis and classification of bacteria or even 

prokaryotic organisms as a whole.  

With this in mind, it is almost baffling that (to the best of the authors knowledge) 

there is no offline solution that would facilitate the computation of these parameters 

while implementing a user-friendly (or even any) graphical interface. The only 

exception is the JSpecies (Jspecies, 2009) application, that implements a very polished 

graphic UI. However, this software is ultimately let down by being outdated which 

translates into not working properly with new versions of NCBI BLAST and suffering 

from two major flaws: – an incorrect implementation of %GC content calculation and 

the (probably being an unfixed bug) inability to process datasets bigger than 20 

sequences (FASTA files), when comparing all possible pairs. 

While there is a more than fair selection of command line applications and freely 

available scripts that can be used, this requires basic or even advanced computer skills, 

which still is not a given for many biologists. Another possible solution is again a rather 
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extensive selection of web-based applications, that while solving the problem of missing 

graphical UI and ease of use come with a different issue – a dataset size limit typically 

falling between 10-20 sequences per project. In the case of the improved and reworked 

JSpeciesWS (JspeciesWS, 2015) web application, this limit is 15 sequences per project, 

which is inconvenient for processing large sets of data. Another possible drawback is 

that when the server in question is experiencing intense traffic, overload might occur 

leading to much longer computation time than expected. 

All of the above-mentioned leads to a clear conclusion – there are no solutions that 

would satisfy all of the requirements. 

Even if we consider only the three most important requirements:  

1. ANIb calculation for unlimited datasets.  

2. Offline functionality. 

3. Usability for regular computer users. 

The list of applications that would satisfy all three boxes requirements is still 

empty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 
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3 Goals 

The goal of this thesis is to design, implement, test, and release a bioinformatics 

toolkit, the main functionality of which lies in comparing genomic parameters between 

the nucleotide sequences of bacterial whole genomes.  

This application is intended as a taxonomic tool, helping with classification and 

taxonomy of bacteria. It can be used to compare large sets of genome sequences as well 

as their selected subsets, all the while being simple to use and navigate which should 

result in its practical usability even for inexperienced lab and research personnel.  

Partial goals derived from the primary one are: 

 To review theory and research behind selected in silico sequence-based 

genomic parameters, their predecessors and alternatives as well as their in 

vitro counterparts and predecessors to gauge their usability, advantages and 

limitations. 

 To gain deep understanding of mentioned algorithms and their inner 

workings. 

 Based on this review, to decide which parameters should be prioritised and 

which (if any) should be omitted. 

 To analyse the need for configurability to provide only relevant options 

while avoiding unnecessary options. 

 To design a project-based saving system that will ensure data preservation 

and accessibility while enabling the program to recover from non-standard 

termination without data corruption and loss of already computed results. 

 To design application structure while taking speed and efficiency into 

consideration, ideally using multiple processing threads.  

 To design the application architecture that will fit outlined goals while being 

compatible with personal computers based on x86 processor architecture and 

running the Microsoft Windows operating system. 

 To implement a solution based on the outlined design and its functional and 

non-functional specifications. 

 To document the implementation in a reasonable degree of detail (i.e. make 

sure that the source code snippets are not the dominant part of this thesis’s 

practical part). 

 To create a simple user manual that explains the application functionality 

from a practical standpoint. 
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4 Application design 

 

4.1 Development process 

The “Waterfall Software Development Cycle” was used as the application 

development model. This cycle consists of following phases: 

 

1. Requirement analysis. 

2. Design. 

3. Development. 

4. Testing. 

5. Maintenance. 

 

For the purpose of this thesis and the application in question only first 4 phases will 

be considered as the maintenance phase will take place after the publication and 

throughout the application life cycle. 

 

4.2 Requirement Analysis  

 

4.2.1 Requirement specification 

Requirements have been based on the feedback of researchers and lab workers from 

the Laboratory of Bacterial Genetics (LBG) at the Czech National Health institute 

(SZU) who will serve as testers and first users as well as consulted with the thesis 

advisor. 

Requirements have been split into two categories – functional and non-functional. 

In the following two lists of specifications, only the main and most important 

requirements are outlined. Even though there are many more less significant 

requirements, listing all of them would serve as clutter making this thesis unnecessary 

long and hampering readers orientation.  

More notable challenges and requirements that made themselves apparent only 

during the implementation process will be discussed in the corresponding chapter. 
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4.2.2 Functional specification 

This section details the functional requirements of the application. In other words, 

this is what the application will actually be “doing” (i.e. tasks that the program will 

perform). This does not include architectural, environment or hardware specifications. 

 Resulting system will come in the form of a single application that will 

handle all of the programs functionality. 

 The application will enable any user to: 

o Set a workspace folder for future projects. 

o Create a new or open an existing project. 

o Delete a project. 

o Import any number of sequence files in .fas, .fasta, .fsa or .txt format. 

o Manage this file collection with the option to add and remove files. 

o Set specific options for BLAST algorithms to influence ANIb 

calculation. 

o Set a path to the blastn executable file that needs to be present on the 

host machine in order to calculate ANI based on the NCBI 

implementation of the BLAST algorithm. 

o Compute selected genomic parameters, depending on their nature 

either for the single sequence (%GC) or as a pairwise comparison 

(ANIb, TETRA). 

o Reset (delete) computed results within the project. 

o Export results in the form of a properly formatted .csv file. 

o Exit the program. 

 The application should be able to manage its folder and file structure in an 

efficient way – i.e. not leaving any residual folders and files after the project 

is deleted and erasing all the temporary files (this pertains mostly to chopped 

query fragments during ANIb calculation) when the calculation is finished. 

 The program should be able to cope with non-standard termination well, not 

losing any results except for the last ANIb calculation that was in fragmented 

state during termination – in this case temporary files will be deleted when 

the calculation is initiated again. 

 The program needs to be able to process virtually unlimited number of files 

with the total number of pairwise comparisons realistically going into 

thousands. 

 If possible, the application should take advantage of multicore systems to 

increase its speed. 

 Visual interface should be simple and clearly labelled to make user 

orientation easy. 
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The above-mentioned requirements are already application specific, however more 

refinement is needed in several cases and some compromises will have to be made, 

especially when it comes to multithreaded nature of the program. 

When it comes to priorities the most important one is the ANIb calculation. Since 

this is a parameter, that has become a golden standard in bacterial taxonomy it needs to 

work reliably and consistently. 

 

4.2.3 Technical specification 

This section specifies things such as the environment in which the application 

should run, hardware it should run on and software needed to run it. Technical or non-

functional specification is used to define the application properties rather than its 

functions. 

 Programming language of choice is C# using Microsoft .Net Framework, 

with Microsoft Visual Studio as the integrated development environment 

(IDE).  

 Application will be developed as a Windows Presentation Foundation 

(WPF) project and will use its respective libraries. While deciding between 

using WPF and Windows Forms library, pros and cons of both were 

considered and choice to use WPF was made due to its more modern feature 

set and higher flexibility. 

 The application should run under Microsoft Windows systems. While 

compatibility with Windows Vista should theoretically not be a problem it is 

not guaranteed, and it will not be tested. Compatibility is guaranteed with 

Windows 7 from Service Pack 1 onwards and all versions of Windows 10. 

 This application does not require an internet connection to run. 

 In order to run the program Microsoft .NET Framework should be installed 

in its latest version. This is however fixed by the system itself if needed.  

 For the calculation of the ANIb genomic parameter, NCBI BLAST - 

preferably in the latest version is required, more precisely having the blastn 

executable file is sufficient.  

 The application language is English.  
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4.2.4 Use cases 

While the scope of this application is very focused and narrow, we will still go over 

a few model use cases. This should enable further validation and/or reassessment of the 

application functional specification. 

 

Actors 

Identifying actors (entities that interact with the program and use its functionality) 

is rather simple since there is only one actor – any user. 

There are no special privileges or user groups with varying degrees of control, so 

any user has access to all of the applications functionality.  

 

Use cases – project management 

Actions used to create and manage a project perpetuated by the user include project 

creation, opening an existing project, deleting a project, importing sequence files into 

the project, adding files into the project, removing files from the project and changing 

project specific and global settings (Figure 9). 

 Create a project – User has an option to create and give a custom name to a 

new project.  

 Open an existing project – User has an option to open an existing 

previously created project. 

 Delete a project – User can delete any existing project by first opening it 

and then selecting the delete option. 

 Import sequence files – After opening or creating a project, user can 

populate the project with sequence files whose names will be displayed 

afterwards. 

 Add sequence files – User can add sequence files to the project with the UI 

updating accordingly. 

 Remove sequence files from the project – User can remove sequence files 

from the project with the UI updating accordingly. 

 Change settings – User has an option to change global settings variables 

such as workspace folder and path to the blastn executable file. 
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Use cases – calculation 

User actions performed in order to calculate genomic parameters for a given set of 

sequence files including selecting the parameter, selecting the pairs or individual files 

from the project to include in the computation itself, computing the parameters, 

exporting and viewing the results. 

Figure 5 Uc Project management 

Figure 6 Uc Calculation 
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 Select parameters and pairs to compute – User can select the parameter he 

wants to calculate and pairs of sequences to be included in this calculation 

from the list of all available sequences for pairwise comparisons or %GC 

calculation. 

 Compute – User then has an option to either confirm or cancel the selection 

starting or cancelling the computation process.  

 Export results – User has an option to export the results for the finished 

calculations to a location of his choosing in .csv format. 

 Viewing the results – User is free to select a software to view the exported 

files based on his/her own preference since the output file format is common 

and widely supported. 

 

4.3 Design 

4.3.1 Domain model 

This model (Figure 11) illustrates the main project entity and its relations with other 

objects from a domain perspective. It was modelled using the Universal Modelling 

Language (UML) via the Visual Paradigm software. 

4.3.2 Architecture 

In terms of application architecture, the program design makes use of three layers: 

1. Presentation layer – Handles graphical user interface, user interaction, form 

validation etc. Interfaces with the application layer. 

2. Domain or application layer – Handles the application logic such as 

different algorithms and data processing. Interfaces with both the data layer 

and the presentation layer. 

3. Data layer – Stores application data. Interfaces with the application layer. 

Figure 7 Domain model 
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In short, the presentation layer enables the user to make request, this results in 

calling a function or method in the application layer which then accesses the necessary 

data using the data layer and if applicable passes the result back to the presentation layer 

resulting in a visual change. 

An argument could be made that a domain layer should be differentiated and while 

the distinction could be made perhaps in regard to the application layer being the one 

including algorithms and methods, while the domain layer should govern the usage of 

data layer methods for populating objects and variables. However, when it comes to this 

project the author decided against making this distinction, since trying to distinguish the 

two would only lead to confusion and would not serve any real purpose.  

In the case of this application, no database in the traditional sense will be used; 

instead the data are going to be stored in and loaded from a directory/file structure using 

custom file types for configuration and project data and computational results. This 

decision was made based on the fact that a separate database service is neither desirable 

nor required and would likely introduce unnecessary performance issues. 

 

Data layer 

The data layer defines and creates the file structure and handle accessing and saving 

the required data.  

The UML diagram (Figure 12) shows the file structure end respective file content 

that will be used in place of a traditional database. 

 

Figure 8 Data layer 
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Application layer 

This layer includes all of the algorithms and associated methods for computing the 

genomic parameters as well as project management. 

The following UML diagram depicts the example ANIb class. 

 

Presentation layer 

The presentation layer will use WPF controls implemented automatically by the 

IDE in the xml language and databinding to construct the user interface. Function ‹calls› 

and ‹variable changes› initiated from the UI will be handled via different Events (for 

ex.: OnTextChange, OnClick, OnSelectionChange). Events in this context could be 

described as a code block that is executed on the program detecting an interaction with 

the user interfaces such as clicking a button, clicking a menu item, writing text into an 

enabled text box or checking a check box or toggling a radio button. 

4.3.2.1.1 UI design 

The interface should be simple, concise and focused, enabling only methods and 

settings that are relevant for the application functionality while keeping the visual flare 

to a minimum.  

After the application starts, the main interface window will be initialized with the 

following layout: 

At the top of the window, there will be a horizontal menu containing six items with 

dropdown submenus. These will be: 

I. File – Active at all times. Menu item enabling project control with options 

to: 

a. New project – Active at all times. Create a new project. Opens a 

confirmation dialog with the possibility to choose the project name. 

b. Open project – Active at all times. Open an existing project via 

standard Windows Open File Dialog. 

Figure 9 ANIb class 
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c. Delete project – Active only when a project is loaded. Delete the 

currently loaded project. Opens a confirmation dialog. 

d. Exit – Terminate the program. Opens a confirmation dialog. 

II. Import – Active when a project is loaded. Import sequences: 

a. From local files – Import a sequence file in any of the supported 

formats from a local storage device. Realized via Windows Open 

File Dialog with multiselect. 

III. Compute – Active only when a project containing at least one sequence is 

loaded. Menu item consisting of two submenus: 

a. ANIb/TETRA – Active only when there are two or more sequence 

imported into the loaded project. Allows the user to compute ANIb 

and TETRA genomic parameters. Opens a list of all possible pairs 

with checkboxes for both parameters and confirmation/cancel 

buttons. Further options such as select all, select none and invert 

selection are present. The two parameters are grouped together for 

convenience since computing both for a given dataset is a common 

practice.  

b. GC content – Compute the %GC for selected sequences. Opens a 

list with all the imported sequences and check boxes for each, 

options to confirm/cancel are present. Same selection options as 

above are supported. 

IV. Results – Active only when a project is loaded and results for some or all 

of the imported files are available. Menu item consisting of three submenus: 

a. ANIb – Active only when ANIb results for one or more pairs are 

available. Upon expanding three more options are available: 

i. Full matrix – Export a full result matrix in the .csv format 

to a local storage location specified by the user for the ANIb 

algorithm with values for both alignment orientations (a as 

query/target, b as target/query) if available. 

ii. Averaged matrix – Active only when both alignment 

orientations are computed for all of the present results. 

Export a matrix in the .csv format to a local storage location 

specified by the user with both alignment orientations 

averaged to a single value – a standard output for practical 

use of an ANI based comparison. 

b. TETRA – Active only when TETRA results for one or more pairs 

are available. Upon expanding two more options are available: 

i.  Matrix – Export a matrix in a .csv format to a local storage 

location specified by the user containing tetranucleotide 
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frequency correlation coefficients between the computed 

sequence pairs. 

c. GC content – Active only when one or more results for %GC are 

available. Export a matrix in .csv format to a local storage location 

specified by the user containing %GC value, sequence length and 

number of fragments (this will be >1 in case of multi FASTA files). 

V. Tools – Active at all times. Expands into two more items: 

a. Settings – Opens a new window allowing the user to set (note that 

the last four settings will be active only when a project is loaded 

since they are project specific): 

i. Workspace folder either by inputting the path manually into 

a text box control or by using a standard Windows dialogue. 

ii. Blastn executable location folder either by inputting the 

path manually into a text box control or by using a standard 

Windows dialogue. 

iii. Blastn algorithm type by a set of mutually exclusive radio 

buttons. 

iv. Mismatch penalty. 

v. Match reward. 

vi. Xdrop gap final parameter. 

b. About 

VI. Reset values – Active only when a there are is at least one result computed 

for any of the parameters within the current project. Contains three sub 

items that represent the corresponding parameters and are active only if the 

appropriate results are available. This will delete all the results for a 

selected genomic parameter in the given project. Confirmation prompt will 

appear. 

In the centre – filling the majority of the window real estate will be the file 

list, this will contain the names of the loaded FASTA, .fas or .fsa files. On the 

right side of the list area a delete button will be present, allowing the user to 

remove any highlighted items from the project. 

On the bottom there will be a status strip displaying messages about 

performed tasks and computational progress. 
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4.3.3 Class structure 

Classes in the project are organized in regard to the individual genomic parameters 

– this spans three separate classes (ANIb, TETRA and GC).  

The next separate class is the Project class, which facilitates project management 

with relevant methods while housing global project variables. It also governs the file 

structure and enables data access via its global variables for other classes and methods. 

Finally, it houses the FASTA validation function. 

To handle the settings saved in the registry and their default value, Global Settings 

class is implemented. 

Serving as main is the automatically generated Main Windows class. This serves as 

an entry point for the application calling the needed methods on initialization. It also 

holds all of the events triggered by interaction with the UI that are implemented mainly 

in its MainWindow.xaml.cs counterpart. 

Additionally, a few other classes are implemented for each of the additional 

windows such as Settings Window, About window and pair/sequence selection 

windows for computation. 

While the Window classes serve mostly as the presentation layer, the distinction 

between the application and data layer is less clear and there are overlaps between both.  

Rules of the class interaction can be summarized like this: The Main Window class 

and/or its sub-windows access all other classes – Project class, parameter classes, Global 

Settings and UPGMA class. Parameter classes and the UPGMA class use Project 

variables, structures and methods. The Project class accesses only the global settings 

class. 

Overall, the only reason this class structure has been chosen is that the author 

considered it the most natural and organic way for him to design and implement the 

application. 
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5 Implementation 

 

The basic idea for the implementation is to build the fundamental blocks first.  

In the first step, three class files were created – ANI.cs, GCC.cs and TETRA.cs. 

These contain the elements outlined above. 

This led to the next step. It was necessary to create project logic in Project.cs in 

order to handle file structure, collections, saving and loading of project data and 

computation results. Furthermore, a validation method had to be created in order to 

determine whether the input files are in the correct FASTA format, count the fragments 

and prepare the input string for the computation of the respective genomic parameter. 

Next, the short Global Settings class was implemented. 

The graphic interface in xml using WPF libraries and control logic was created. 

This includes MainWindow and several other windows with various control elements 

for project management, settings, computation and exporting results. This is the 

connecting fabric for all the created modules. 

Helping the author to learn the skill needed for this massive undertaking were 

several books, hours of internet searching and going through different bioinformatics 

and programming forums and obscene amounts of caffeine. (Compeau, 2015) (Nagel, 

2009) 

In the following paragraphs, the implementation is briefly described on a class-by-

class basis, while problematic and/or interesting parts of the solution are examined more 

thoroughly including snippets of the actual code. 

 

5.1 Classes 

5.1.1 Project.cs 

 

Variables 

 Public static string folderFullPath – Full path to the projects folder. 

 Public static string projectName – Just the name. 

 Public static List<string> fastas – List of imported FASTA files. 

 Public static List<string> ErrorLog – Error list for the current project and 

current session, entire log is available in the form of a file. 
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Note: The static modifier for these variables is chosen because it is 

highly undesirable for them to exist in more instances since we always work 

with only one project at the time. 

 Public static class ItemsToCompute – Contains extension classes 

ItemsSelectedToCompute, ItemsToComputeGC and 

ItemsToComputeANITETRA. These custom collection objects handle 

various collections of sequences or sequence pairs. 

 

Methods 

5.1.1.1.1 Public static bool NewProject(string name) 

This method handles creating the project and its folder and file structure. It also 

loads the global settings from the registry, or their default values using the 

GlobalSettings class and calls the SaveProject method. 

 

5.1.1.1.2 Public static bool SaveProject() 

This method saves the project data into the project master file (project_name.nsat). 

These data comprise of the number of imported sequences and their full paths. It also 

makes sure that at the time of saving, the sequence files exist and are accessible. In case 

of errors, it deletes entries for the missing files and throws appropriate errors and 

warnings. 

 

5.1.1.1.3 Public static bool OpenProject(string path) 

Opens an existing project by parsing the master file and checking availability of the 

imported sequences. If a project is already loaded, it first saves it and then loads the new 

one. 

 

5.1.1.1.4 Public static bool ImporFastasFF(string [ ] names) 

Gets file paths in an array from OpenFileDialog, checks their availability and then 

validates them by using ValidateFile. It also calls SaveProject. 
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5.1.1.1.5 Public static bool ValidateFile(string path) 

FASTA validation has to be implemented here since there are no fast and reliable 

libraries available for C# that would handle this. Loading different file formats 

according to the file extension is solved via the OpenFileDialog parameters.  

 

 

While the above snippet might look convoluted and overly complicated for a simple 

validation, it is justified. To illustrate we will break the method down: 

 Full path of the FASTA file in question serves as the input; this file is read 

line-by-line by the StreamReader. To get rid of accidental whitespaces 

and/or tabs, we first trim the start.  

public static bool ValidateFile(string path) 
        { 
            StreamReader reader = new StreamReader(path); 
            string line = reader.ReadLine(); 
            line = line.TrimStart(); 
            for (int i = 0; i < 100; i++) 
            { 
                if (line == "") line = reader.ReadLine(); 
                else if (line.StartsWith(">")) 
                { 
                    break; 
                } 
            } 
            line = line.TrimStart(); 
            if (!line.StartsWith(">")) 
            { 
                return false; 
            } 
            line = reader.ReadLine(); 
            while (line != null) 
            { 
                line = line.TrimStart(); 
                if (line.StartsWith(">")) line = reader.ReadLine(); 
                else 
                { 
                    line = line.ToLower(); 
                    foreach (char i in line) 
                    { 
 
 
                        if (i == 'g' || i == 'c' || i == 's' || i == 't' || i == 'a' 
|| i == 'w' || i == 'r' || i == 'y' || i == 'm' || i == 'k' || i == 'h' || i == 'b' || 
i == 'v' || i == 'd' || i == 'n' || i == '\r' || i == ' ' || i == '\t') 
                        { 
                            line = reader.ReadLine(); 
                        } 
                        else return false; 
                    } 
 
                } 

  line = reader.ReadLine(); 
            } 
            return true; 
        } 
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 Then, we proceed to start searching for the header while being liberal and 

allowing up to 99 empty lines at the start of the file. If we don’t find the 

header on the 99th line, we consider the file invalid. 

 After finding the header, we proceed to read the file line by line till the end 

or until we encounter an invalid character in the sequence.  

 We also take into account the possibility of a multi FASTA file by trimming 

every line and checking its start for the header symbol before analysing it 

character-by-character. 

 We do not, however, allow for a header to be on the same line as a part of the 

sequence, since this is no longer only formal format violation, but instead a 

functional one, with potential to skew the results. 

 

5.1.2 ANI.cs 

 

Variables 

This class houses no variables outside of its methods. 

 

Methods 

5.1.2.1.1 Public static int computeANIb 

(List<Project.ItemsSelectedToCompute> pairsToCompute) 

The name of this method is perhaps somewhat misleading, since it does not actually 

compute the ANIb value; instead, it facilitates this by calling the ANI function which 

does the actual computation and passing it the appropriate file paths. 

It performs checks for file existence and if there is a problem, it will alter the item 

list accordingly and throw appropriate warnings and errors. 

It also performs (prior to the ANIb calls) multithreaded chopping of all sequence 

files used in the computation to the 1020 base fragments using the ChopQuery() mehod 

call. 

The reasoning for the return value of this function being an integer is the fact that it 

basically outputs error codes and the code calling this method then evaluates what kind 

of error has been encountered. This is ultimately a question of granularity; the method 

could have outputted a string, but in the authors opinion, this would be excessive and 

unnecessary. 
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5.1.2.1.2 Private static void ChopQuery(string PathQ) 

This method takes care of chopping the query into the 1020 base long chunks, while 

not omitting the last fragment that is generally of shorter length. 

The file is first read line-by-line to remove the headers, the resulting sequence is 

then examined on per-character basis and spaces, tabs and newlines are removed 

(counting on the fact that the file had to be validated earlier). Then a string builder is 

used to build the resulting sequence, which should result in improved performance 

compared to regular expressions. Finally, the chunks are created. This is handled by 

accessing the string by index (in practice string is a char [ ]). Each chunk is saved into 

the project_name/temp/file_name/folder. FASTA header of each chunk consists of its 

original header and the number of the chunk in question. Filename is then simply 

chunk_no.fsa. 

 

5.1.2.1.3 Private static bool ANIb(string PathA, string PathB) 

This is the most important method in this class. It takes two sequences and 

calculates the ANIb value for them.  

 

private static bool ANIb(string PathA, string PathB) 
        { 
            if (File.Exists(PathA)) 
            { 
                if (File.Exists(PathB)) 
                { 
                    int ChunkNo = 0; 
                    double ani = 0;//sum of alignment scores from all chunks 
                    string dir = Project.folderFullPath + "\\temp\\ani\\" + 
Path.GetFileNameWithoutExtension(PathB); 
                    List<string> files=Directory.GetFiles(dir, "*.fsa", 
SearchOption.TopDirectoryOnly).ToList(); 
                    Parallel.ForEach(files, (file) => //multihtreaded blasting much 
performance such wow 
                    {// Start the new process. 
                        Process p = new Process(); 
                        // Redire   ct the output stream from shell to SO 
                        p.StartInfo.UseShellExecute = false; 
                        p.StartInfo.RedirectStandardOutput = true; 
                        p.StartInfo.RedirectStandardError = true; 
                        p.StartInfo.CreateNoWindow = true; 
                        p.StartInfo.FileName = GlobalSettings.BlastnExecutablePath; 
                        p.StartInfo.Arguments = 
                        " -outfmt \"6 length qlen nident pident mismatch gapopen\" " + 
//custom format separated by tab with only the results relevant for this use, not that 
not all fields are currently used 
                        "-subject " + Path.GetFullPath(PathA) + " " + 
                        "-query " + Path.GetFullPath(file) + " " + 
                        "-penalty -1 "+ 
                        "-gapopen 5 " + 
                        "-gapextend 2 " + 
                        "-xdrop_gap_final 150 " +//parameters specified in methodology 
                        "-evalue 1e-15 " + //denoise (expected coincidental matches)                        
"-max_target_seqs 1 "+ //we want just the top (best) alignment 
                        " " + "-dust no"; //remove regions of low complexity 
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There are several parts worth going over. 

We can notice that a parallel for each loop is used - contents of this loop are equal 

to blasting and processing the result of one fragment of the query sequence vs the 

subject sequence. The shell execute is disabled and the output is redirected to the 

StandardOutput, which we can parse. Blastn path is fetched and start arguments are 

specified. These include specifying the custom format of the blast output format 6. In 

this, we specify the fields we are interested in. Note that some of the values are not 

currently used, however they are relevant for planned graphical representation of the 

alignments. Resulting output are desired values separated by tabs, which is a simple and 

easy to parse format.We then read the output using StreamReader, wait for the process 

to exit and examine the exit code. 

Here we first examine the code with which the blastn process ends. Anything else 

than a 0 is an error. 

 

if (p.ExitCode != 0) //exit code !=0 is a BLAST error 
                        { 
                            string error = "\"" + p.StartInfo.FileName + "\" " + 
p.StartInfo.Arguments + "\n" + p.StandardError.ReadToEnd(); 
                            MainWindow.main.Status = error; 
                            Project.ErrorLog.Add(error); 
 
                        } 
 
                        else 
                        {//parse output 
 
                             
                                 
                                string[] cells = output.Split('\t'); 
                                if (cells.Length == 6) 
                                { 
                                double TotalIdentity = 0; 
                                double coverage = 0; 
                                double AlignLength; 
                                double matched; 
                                AlignLength = Double.Parse(cells[0]); 
                                matched = Double.Parse(cells[2]); 
                                double FragLentgth; 
                                FragLentgth = Double.Parse(cells[1]); 
                                if (AlignLength >= 1020) coverage = 1; 
                                else  coverage =   AlignLength / FragLentgth; 
                                    if (coverage >= 0.700000) 
                                    { 
                                        TotalIdentity = 
((matched/FragLentgth)*coverage); 
                                        if (TotalIdentity > 0.300000) 
                                        { 
 
                                            InterlockedAddDouble(ref ani, 
TotalIdentity); 
                                        Interlocked.Increment(ref ChunkNo); 
                                        } 
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In case of successful calculation (exit code==0), we will analyze the output. Here 

we parse the cells from the output and if the requirements outlined in the ANI chapter 

are met we will use it for the ANIb value calculation.  

What is interesting from a programmer standpoint here is the Interlocking and 

thread safety consideration. We need to change two variables outside of the parallel 

loop. ChunkNo can be incremented by the already implemented Interlocked.Increment 

method. The ani variable which sums all the identity values is trickier. There is the 

Interlocked.Add method; however, this only works for integers. This led the author to 

implement a custom method. 

InterlockedAddDouble(ref double refLocation, double add)   

 

The main purpose of this method is to allow change to the referenced value only 

when it hasn’t been changed during the process of addition. This is realized by the 

while(true) infinite loop and the Interclocked.CompareExchange, that exchanges the 

value only when the reference did not change and the escape from the loop is solved by 

the if condition and the break command. 

 

5.1.2.1.4 Public static bool GenerateCSVAni(string file) 

This and the public static bool GenerateCSVAniAvg(string file) methods are 

used to generate the csv result matrices. These methods use typical nested foreach loops 

with alterations to present either bi-directional or averaged ANIb values. 

 

5.1.3 GCC.CS 

Variables 

No global variables are present in this class. 

private static void InterlockedAddDouble(ref double refLocation, double add) 
        {//custom method for thread safe double addition 
            double startVal = refLocation; 
             
            while(true) 
            { 
                double current = startVal; 
                double newVal = startVal + add; 
                startVal = Interlocked.CompareExchange(ref refLocation, newVal, 
current); 
                if (startVal == current) break; 
            } 
 
        } 
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Methods 

5.1.3.1.1 Public static bool computeGCcontent(string path) 

Using a simple foreach cycle with if conditions for different characters, this method 

calculates overall sequence length, number of fragments (by summing up the number of 

lines starting with the header character “>”, number of individual A, T, G and C bases, 

number of N bases, number of other ambiguity symbols and the %GC content. 

Most notable here is that unlike the JSpecies and JSpeciesWS the %GC calculation 

is implemented correctly therefore only decidedly G or C and decidedly A or T bases 

are considered. 

5.1.3.1.2 Public static bool generateCSVGc(string file) 

The method used for generating the result matrix, standard foreach cycle taking all 

the files in the result folder and presenting the contained information in the csv format. 

 

5.1.4 TETRA.cs 

This class was implemented last, with the old implementation being completely 

scrapped in favor of the new and improved one. This is a good example of clean and 

efficient programming, unlike some other parts of this project. Multithreading is 

handled optimally here and overall there is little to improve further. 

Variables 

No global variables in the TETRA class. 

Methods 

5.1.4.1.1 Private static Dictionary<string,double> computeZscores(string 

path) 

This method takes the path of a sequence file, loads it and computes z scores for 

every one of the 256 tetranucleotides using the maximum order Markov model. 

Detailed breakdown with source code bellow: 
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The first part of the code disregards the header lines, then all the ambiguous bases, 

since those cannot be used to calculate tetranucleotide frequencies. StringBuilder is used 

for performance reasons. Also, by using two, we can construct the complementary 

strand at the same time. All we have to do then is reverse the complementary strand and 

concatenate the two strings. The char array method used for the reversal should provide 

the best performance. 

 

 

private static Dictionary<string, double> computeZscores(string path) 
        { 
            //first load the sequence, remove the headers and keep only G,C,A and T 
bases while concatenaning with the reverse complement 
            try 
            { 
                StringBuilder sb = new StringBuilder(); 
                StringBuilder sbC = new StringBuilder(); 
                StreamReader reader = new StreamReader(path); 
                string line = reader.ReadLine(); 
                while (!String.IsNullOrEmpty(line)) 
                { 
                    if (!line.StartsWith(">")) 
                    { 
                        line = line.ToUpper(); 
                        foreach (char c in line) 
                        { 
                            if (c == 'A') 
                            { 
                                sbC.Append('T'); 
                                sb.Append('A'); 
                            } 
                            else if (c == 'T') 
                            { 
                                sbC.Append('A'); 
                                sb.Append('T'); 
                            } 
                            else if (c == 'G') 
                            { 
                                sbC.Append('C'); 
                                sb.Append('G'); 
                            } 
                            else if (c == 'C') 
                            { 
                                sbC.Append('G'); 
                                sb.Append('C'); 
                            } 
                        } 
                    } 
                    line = reader.ReadLine(); 
                } 
                string compl = sbC.ToString(); 
                char[] array = new char[compl.Length]; 
                int forward = 0; 
                for (int i = compl.Length - 1; i >= 0; i--) 
                { 
                    array[forward++] = compl[i]; 
                } 
                compl = new string(array); 
                string seq = sb.ToString() + compl; 
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Next, it was necessary to create dictionaries for observed and expected 

tetranucleotide frequencies and derived z-scores along with the observed di/tri 

nucleotide frequencies. These are keyed by a string of the oligonucleotide itself and 

double datatype stores the frequency value. Filling for the keys was handled via nested 

foreach cycles providing variations with repetitions from A, C, G and T characters. 

char[] n4 = { 'A', 'C', 'G', 'T' }; 
                char[] tetra = new char[4]; 
                Dictionary<string, double> observed4 = new Dictionary<string, 
double>(); //fill the list with all 256 tetranucleotide combinations as keys  
                Dictionary<string, double> expected4 = new Dictionary<string, 
double>(); 
                Dictionary<string, double> zscores = new Dictionary<string, double>(); 
                foreach (char n1 in n4) 
                { 
                    tetra[0] = n1; 
 
                    foreach (char ntwo in n4) 
                    { 
                        tetra[1] = ntwo; 
                        foreach (char nthree in n4) 
                        { 
                            tetra[2] = nthree; 
                            foreach (char nfour in n4) 
                            { 
                                tetra[3] = nfour; 
                                observed4.Add(new string(tetra), 0.0); 
                                expected4.Add(new string(tetra), 0.0); 
                                zscores.Add(new string(tetra), 0.0); 
                            } 
                        } 
                    } 
 
 
                } 
                char[] n3 = { 'A', 'C', 'G', 'T' }; 
                char[] tri = new char[3]; 
                Dictionary<string, double> expected3 = new Dictionary<string, 
double>(); 
                Dictionary<string, double> observed3 = new Dictionary<string, 
double>(); 
                //fill the list with all trinucleotide combinations as keys  
                foreach (char n1 in n3) 
                { 
                    tri[0] = n1; 
                    foreach (char ntwo in n3) 
                    { 
                        tri[1] = ntwo; 
 
 
                        foreach (char nthree in n3) 
                        { 
                            tri[2] = nthree; 
                            observed3.Add(new string(tri), 0.0); 
                            expected3.Add(new string(tri), 0.0); 
 
                        } 
 
                    } 
 
 
                } 
                char[] n2 = { 'A', 'C', 'G', 'T' }; 
                char[] di = new char[2]; 
                Dictionary<string, double> observed2 = new Dictionary<string, 
double>(); //fill the list with all dinucleotide combinations as keys  
                Dictionary<string, double> expected2 = new Dictionary<string, 
double>(); 
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Filling the values for observed frequencies is facilitated by a for cycle accessing 

four, three and two-character long substrings from the sequence analyzed. Next, the 

expected frequencies and later, the derived z-scores are computed based on the formulas 

detailed in the theoretical portion of this thesis. 

The method returns a dictionary of z-scores keyed by the corresponding 

tetranucleotides for the given sequence. 

 

                foreach (char n1 in n2) 
                { 
                    di[0] = n1; 
                    foreach (char ntwo in n2) 
                    { 
                        di[1] = ntwo; 
                        observed2.Add(new string(di), 0.0); 
                        expected2.Add(new string(di), 0.0); 
 
                    } 
 
 
                } 
                int length = seq.Length; 
                for (int i = 0; i < length - 3; i++) 
                {//tetranucleotide observed frenquencies 
                    observed4[seq.Substring(i, 4)] += 1; 
                } 
                for (int i = 0; i < length - 2; i++) 
                {//trinucleotide observed frenquencies 
                    observed3[seq.Substring(i, 3)] += 1; 
                } 
                for (int i = 0; i < length - 1; i++) 
                {//dinucleotide observed frenquencies 
                    observed2[seq.Substring(i, 2)] += 1; 
                } 
} 
                foreach (string tet in observed4.Keys) 
                {//Fill the expected tetranucleotide frenquencies 
                    expected4[tet] = (observed3[tet.Substring(0, 3)] * obser-
ved3[tet.Substring(1, 3)]) / observed2[tet.Substring(1, 2)]; 
                } 
 
                foreach (string tet in observed4.Keys) 
                {//compute zscores for each tetranucleotide 
                    zscores[tet] =(observed4[tet]- expected4[tet])/ (expected4[tet] * 
((observed2[tet.Substring(1, 2)] - observed3[tet.Substring(0, 3)]) * (obser-
ved2[tet.Substring(1, 2)] - observed3[tet.Substring(1, 3)]))) / (observed2[tet.Sub-
string(1, 2)] * observed2[tet.Substring(1, 2)]); 
                }                return zscores; 
            } 
            catch 
            { 
                return null; 
            } 
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5.1.4.1.2 Pirvate static double ComputePearsons(Dictionary<string, double> 

zscoresA, Dictionary<string, double> zscoresB) 

This is a relatively simple method that takes two z-score dictionaries for the two 

sequences that are being compared and using foreach loop computes the Pearson`s 

correlation coefficient in this context referred to as Tetranucleotide frequency 

correlation coefficient. 

 

5.1.4.1.3 Public static bool 

computeTetra(List<Project.ItemsSelectedToCompute> FastaPairs) 

This method takes a custom collection implemented in the Project class as the input 

argument. This is a collection of unique pairs selected by the user in the UI, unlike the 

collection passed to ANIb methods, it is not bi-directional (instead of A-B and B-A 

pairs there is only one of the two). 

  public static bool computeTetra(List<Project.ItemsSelectedToCompute> FastaPairs) 
        {//Compute Tetra score(Pearsons cc of z scores from seq a and seq b) using 
implemented functions 
         //The way we store information is a dictionary with a given fastas filename 
as a key and dictionary of its zscores as a value 
            try 
            { 
            
                List<string> uniqueFiles = new List<string>(); 
                
                foreach (var pair in FastaPairs) 
                { 
                     
                    if (!uniqueFiles.Contains(pair.FullPath)) 
uniqueFiles.Add(pair.FullPath); 
                    if (!uniqueFiles.Contains(pair.FullPathB)) 
uniqueFiles.Add(pair.FullPathB); 
                 
                          
 
                     
 
                } 
                ConcurrentDictionary<string, Dictionary<string, double>> Zscores = new 
ConcurrentDictionary<string, Dictionary<string, double>>(); 
                Parallel.ForEach(uniqueFiles, (file) => 
                { 
                    Zscores.TryAdd(file, computeZscores(file)); 
 
                }); 
 
                Parallel.ForEach(FastaPairs, (pair) => 
                { 
                    double tetra = ComputePearsons(Zscores[pair.FullPath], 
Zscores[pair.FullPathB]); 
                    if (!File.Exists(Project.folderFullPath + "\\TETRA\\" + 
Path.GetFileNameWithoutExtension(pair.FullPath) + "_vs_" + 
Path.GetFileNameWithoutExtension(pair.FullPathB) + ".tet")) 
                    { 
                        File.WriteAllText(Project.folderFullPath + "\\TETRA\\" + 
Path.GetFileNameWithoutExtension(pair.FullPath) + "_vs_" + 
Path.GetFileNameWithoutExtension(pair.FullPathB) + ".tet", tetra.ToString("F6")); 
                    } 
                }); 
                return true; 
            } 
            catch { return false; } 
        } 
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It is good to note the use of multithreading in this method; first, using a 

ConcurrentDictionary to store the z-scores so they can be computed in parallel for 

unique sequences and access to the storing structure remains thread safe. Second, for 

correlation coefficient calculation. 

 

5.1.5 GlobalSettings.cs 

Variables 

Public static string WorkspaceFolder  

Public static string BlastnExecutablePath 

Self-explanatory. 

 

Methods 

5.1.5.1.1 Public static bool LoadGlobals() 

Loads the two path values from the corresponding registry entries. In case there are 

no values saved in the registry it saves the default ones. 

Enviroment.SpecialFolder.MyDocuments is used for stability. 

 

5.1.5.1.2 Public static bool SaveGlobals() 

 Saves the current values to the registry. 

 

 

 

 

5.1.6 MainWindow.xaml.cs 

Variables 

Internal static MainWindow main – Enables access to MainWindow controls 

from different classes if needed. 
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Internal string status – Using data binding, the status variable is bound to the 

contents of the ListBox lbStatus which is a control in the MainWindow showing the 

current status of the program. 

 

Methods 

5.1.6.1.1 Enable/disable methods 

These methods simply enable and disable different sets of controls. They are called 

from different methods at different times. The main idea is for the user not to be able to 

access controls that would not work at the time anyway. For example, trying to import 

files while no project is loaded, or trying to compute ANIb values without having 

sequences (or just one) imported. 

 

5.1.6.1.2 Public MainWindow() 

The entry point. It initializes the application components, loads global settings, sets 

up the databinding on status and makes sure all controls, except Project->Open, Project-

>Close and Tools->Settings are disabled. 

 

5.1.6.1.3 Control click methods 

The rest of this class is comprised of the click methods handled through 

RoutedEvent arguments. These methods are called when the user clicks the 

corresponding control. They ensure that proper functions with proper inputs are called; 

they also take care of enabling/disabling the controls by calling the associated methods 

and output appropriate status, warning and error messages. Examining them any closer 

is not needed. 

 

5.1.7 SelectionWindow.cs and GCSelectionWindow.cs 

These two classes are owned by the main. They serve as controls for pair/sequence 

selection for the implemented calculations.  

They make use of the custom collections implemented in the Project class. Another 

worthwhile mention goes to the use of databinding to generate dynamic controls from 

the bound collection.  
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SelectionWindow controls the ANIb and TETRA calculation, since these two 

parameters are usually computed together. However, there is of course an option to 

select one or the other or both for each pair using the appropriate checkboxes.  

GCSelectionWindow controls the %GC content calculation along with other 

sequence parameters such as length, number of each base type, number of fragments, 

number of unknown bases and number of ambiguous bases. It is handled in a similar 

fashion to the SelcetionWindow. 

 

5.1.8 Other windows 

While the about window was simply not yet implemented, since it would serve no 

practical purpose, the SettingsWindow class is very simple, serving to pass and verify 

the path variables between the program and the user. This is handled by calling the 

GlobalSettings class. 
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6 User manual 

This manual aims to familiarize the user with the programs functionality and its 

GUI. It explains how to perform all of the supported actions. 

 

6.1 Program installation 

Initiate the installation by navigating to the NSAT_install folder on the included optical 

disk. Alternatively it is possible to compile the source code from the folder 

NSAT_source on the same disk. It is however recommended to use the first option, 

since the application will check for updates that can improve its functionality and make 

the user experience more pleasant. After the installation is complete, the program will 

launch automatically. In case your computer does not have Microsoft .NET Framework 

installed, it should automatically prompt you to download and install it. However, an 

installation file is included in the NSAT_install folder. 

 

6.2 BLAST+ installation 

Installation file for the latest version of BLAST+ is included on the optical drive 

inside the NSAT_install folder. It can also be downloaded from:  

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/ 

The NSAT application was tested using BLAST+ in the 2.7.1 stable version, so it is 

highly recommended to download this exact version. 

The installation wizard should lead you through the setup process with no 

problems; however, make sure to make a note of the installation folder used.  

 

6.3 Step-by-step user guide 

The following guide familiarizes you with all the available functions and options 

supported by the NSAT application. This guide assumes you managed to compile or 

install the program and it is currently running. 

1. On the first launch, the program should notify you that the path to blastn.exe 

is not set. Confirm this dialog. 

2. Next, locate the horizontal menu bar at the top of the window and hover 

your cursor over the Tools menu item. 
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3. A drop down menu will appear, from that hover over the Settings option 

and click on it. 

4. The Settings window will appear on top of the NSAT window. Here you 

need to set the path to the blastn.exe file for the ANIb calculation to 

function. You will find this file in the bin folder inside you NCBI BLAST+ 

installation directory.  

5. To input the path, you can either use the text box adjacent to the „BLASTn 

executable location“ label, or by pressing the … (three dots) button next to 

the aforementioned text box and navigating to the file using Windows 

explorer. 

 

6. You can also change the workspace location here; however, it is 

recommended to keep it as is. The default location for the workspace folder 

is //DOCUMENTS//NSAT. 

7. Next, you should create your first project. 

8. Select the File menu item and in the dropdown menu, click on New Project. 

 

Figure 11 NSAT File menu 

Figure 10 NSAT Settings 
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9. The New Project window will appear. In the text box Project name, fill in 

the desired name for your project. If you input name of an existing project, 

the project creation will fail and you will be notified by an error message in 

the status bar at the bottom of the NSAT window. 

10. You can also open an existing project in this state by clicking on Open 

project in the File submenu. 

11. After the project is successfully created or opened, you should be notified in 

the status bar. Note that if you are loading an existing project, all the 

previously imported files will be loaded with, if they are still accessible. 

This also means they will be validated again, which can take a couple 

seconds. 

Once a project is loaded you, can also choose to delete it. This is done by 

selecting the Delete project option from the File menu. This will delete the 

projects folder and all of its contents, which means all of the computed 

results for this project will be deleted unless you saved a result matrix 

outside of the project folder. You will be asked to confirm your choice 

before the project is irreversibly removed. 

12. Now you are free to import sequence files to your project. Select the Import 

menu item and Fastas from files from the submenu. You can now load 

.fasta, .fsa, .fas or even .txt files (Note that they need to have a proper fasta 

header and a nucleotide sequence as the content). Multiselect is enabled, 

which means you can select multiple files and load them at once.  

If you wish to remove some of the files from your project, you can do so by 

selecting them in the list box inside the NSAT window where they are 

shown. Single selection is realized by clicking on the item, while multiple 

selection can be achieved by either holding down the control key and 

clicking or by holding down the shift key and click-dragging your cursor 

over the items. 

Figure 12 NSAT New project 
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File validation can take a few seconds depending on the number of 

sequences being loaded, computer speed and sequence length. After this is 

done, you are free to select and calculate the desired parameters. 

 

13. Select the Parameters menu item; in its submenu, select Compute and 

from its list choose either ANIb\TETRA or GC Content depending on 

which parameter you want to compute. 

14. After you make yout choice, a computational window will open. In case of 

the ANIb/TETRA parameters, it will contain all the possible unique pairs 

(variations without repetition) created from the imported sequences and 

check boxes for both of the parameters for each pair. In case of the GC 

content, it will contain all of the unique sequences each with a single check 

box.  

15. Make your selection of pairs/sequences and desired parameters by checking 

the appropriate check boxes. The Select all, Select none and Invert 

selection controls available in both windows can help you when it comes to 

bigger datasets. 

Figure 13 NSAT loaded project 
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16. The computation is initiated by clicking the Compute button. Caution: 

While the TETRA and %GC parameter calculations are extremely fast and 

will take only seconds (TETRA takes slightly longer than %GC), the ANIb 

calculation takes minutes to hours in larger datasets. It is recommended to 

use only a few sequences for testing purposes in case of this parameter. 

 

17. When the computation is finished, you will be notified by the program.  

18. You can now export the results in .csv format by selecting Parameters-

>Export CSV and the appropriate parameter the export options will be 

active only for the parameters that have been computed for at least one 

sequence or pair, respectively. 

In case of ANIb, you can pick either full or average matrix. The full matrix 

resents the bi-directional values for the parameter, however, this is rarely 

Figure 14 NSAT computation 
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used for testing purposes. It is better to pick the matrix with averaged 

pairwise distances. 

19. The last option provided is the Reset results option. By selecting this item, 

you can choose a parameter for which you want to delete previously 

computed results by clicking on it in the sub menu. 

20. You can exit the application either by clicking the X in the top right hand 

corner of the NSAT window or by navigation to the File menu and selecting 

the Exit option. 

21. You do not have to worry about saving your progress. It is done 

automatically anytime you change a setting, add a sequence file or another 

result (for a single pair or sequence) is computed. 

22. Finally, even by terminating the program in non standard way such as 

killing the process or shutting down your computer will not cause any 

problems. You will only lose partially computed results.. 
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7 Results and testing 

 

7.1 Testing 

Two separate testing methods (Unit and User testing) have been used. 

7.1.1 Unit testing  

For data and domain layer testing, unit tests have been created where possible using 

Microsoft Visual Studio and testing mostly the implemented algorithms with the overall 

data handling. 

<unit test example snipper> 

7.1.2 User testing 

UI and application testing 

For the purposes of presentation layer testing and overall application testing, user 

tests have been conducted ensuring that the resulting program works as intended.  

This was realized by testing all the functions of this program on two separate 

machines – one running Windows 10 and the other running Windows 7 with both 

systems having the latest updates installed and using the latest version of NCBI BLAST 

at the time (version 2.7.1 stable) for ANIb calculation. Multiple tests have been 

conducted in order to test all of the functionality and different combinations and 

succession of user actions. Features tested were: 

 Launching and quitting the program. 

 Creating a new project with a custom name. 

 Opening an existing project – not containing any files, containing files, with 

no results computed, with some results computed, with all results computed. 

 Importing files to the project.  

 Removing files from the project. 

 Changing the workspace folder. 

 Changing the blastn executable location.  

 Changing the blastn command line application parameters and the effect on 

ANIb results. 

 Forcefully terminating the program while computation is in progress and 

recovering results. 

 Exporting and viewing result files. 

 Programs ability to deal with invalid sequence files. 



72 

 

 

Results accuracy testing 

Testing accuracy of the achieved computational results is crucial to ensure that the 

algorithms have been implemented properly.  

Testing sequences were selected as a part of a bigger sequence set used for an 

article co-authored by the author of this thesis. The article in question deals with 

taxonomic revision of the Acinetobacter lwoffii group. While the article has been 

already submitted it is now in pre-print and pending review status.  

The article in question is titled “Revising the taxonomy of the Acinetobacter lwoffii 

group: the description of Acinetobacter pseudolwoffii sp. nov. and emended description 

of Acinetobacter lwoffii” and its pre-print version can be found on the attached compact 

disc. The article was submitted to the journal “Systematic and Applied Microbiology”. 

 

All testing for ANIb and TETRA parameters was done on the same set of sequence 

files. For %GC testing a different, more suitable set of sequences was used and %GC 

values from the NCBI nucleotide database served as control (since this metric is 

calculated improperly in both JSPecies and JSpeciesWS).  

The tables with actual results used for this testing are attached on the optical disc in 

the \\Attachements\\Validation\\ folder, since it is pretty much impossible to make 

them a part of this printed docuent in any satisfactory manner.  

 

 

 

 

 

 

 

 

 

 



73 

 

8 Discussion 

 

As can be seen from the testing and results section, the application is functional for 

its purpose, while providing accurate results. There are however some caveats and other 

things worth noting when it comes to the individual genomic parameters and their 

results. 

 

8.1 User testing 

While the results of user testing are mostly positive, there can still be stability 

issues in cases of highly non-standard user behaviour. 

 

8.2 Result analysis 

8.2.1 ANIb results analysis 

We can notice a slight deviation from JSpecies and JSpeciesWS controls in ANIb 

results. However, this variation can be attributed to a different and newer version of the 

BLAST algorithm and its heuristic nature. This is supported by the fact that the ANb 

values obtained by JSpecies and JSpeciesWS deviate from each other as well. 

Nevertheless, all these deviations are small (<0.1%) and occur only for low ANIb 

values, thus being insignificant for the purposes of this application. 

That being said, further investigation is required and has been initiated by the 

author in a form of an inquiry to dr. Ramon Rosselló-Móra, the senior author of the 

JSpecies and JSpeciesWS applications. The reason for this inquiry was the fact the 

blastn parameters specified in the JSpeciesWS documentation are functional only for the 

older BLAST algorithm, while JSpeciesWS and our new application uses the new and 

improved BLAST+. Although, it is possible to “translate” all of the parameters used into 

their equivalents for the BLAST+, the issue comes with the required parameter 

“penalty” of -1. Specifying this parameter causes BLAST+ to throw an error forcing the 

user to specify two more parameters, “gap open penalty” and “gap extension penalty”, 

in a specific range. Because these parameters are not specified in the methodology, it is 

possible that the two mentioned parameters are the source of the inconsistencies. In the 

current state those are set to 5 and 2 respectively, mirroring the legacy BLAST default 

values. The creators of the JSpeciesWS software therefore had to specify these 

parameters, assuming that they indeed used the penalty of -1, which would lead to 
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results that more closely mirror those obtained with the previously used software. To 

verify this assumption, ANIb was calculated using the legacy BLAST algorithm and no 

difference outside the margin of error was found between these values and the values 

calculated by the original JSpecies. However, using the legacy BLAST version is not 

recommended as it is inferior in many ways, including performance, to the newer 

BLAST+, while also being no longer supported. Therefore, our program will continue to 

use the BLAST+. 

 

8.2.2 %GC results analysis 

When it comes to the %GC results, we can see that our results deviate from those 

produced by both JSpecies and JSpeciesWS in some cases, which should not happen 

since this is an exact metric, not a heuristic estimation. In this case, the controls are to 

blame. When checked against the NCBI nucleotide database, the results from both 

control applications differ at times, while our results are always on point. This indicates 

that the implementation of this genomic parameter in the two control programs is 

incorrect and confirms the observation of others that JSpecies does not work properly. 

It is likely that the faulty calculation of %GC by JSpeciesWS is caused by improper 

handling of the many ambiguity symbols that can appear in a FASTA file. Proper 

implementation should only take into an account G, C , A, T, S and W. What most 

likely happens (inferred from the fact that when deviating, %GC scores yielded by 

JSpeciesWS are slightly lower than controls) that the overall sum of decidedly G or C 

bases in the whole sequence is probably calculated correctly, but as a next step instead 

of dividing by the sum of decidedly G or C plus the sum of decidedly A or T the G or C 

sum is divided by sequence length. This then also takes into account all of the other 

ambiguity symbols such as N or K that do not hold enough information to be decidedly 

members of either of the pairs and should therefore not be used in the calculation at all. 

The deviations found for %GC values calculated by JSpecies are too high to be 

explainable as above and it is possible that this software suffers from another systematic 

error      

 

8.2.3 TETRA results analysis 

Tetranucleotide correlation coefficient results are satisfactory, being identical with  

the controls. Furthermore, the implementation has been shown to be extremely fast, 

handily outperforming the original JSpecies program, while in case of the JSpeciesWS 

such comparison cannot be made since it runes on a remote server. 
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8.3 Future goals 

It is clear from the result analysis, that there is still work to be done on this 

application.  

Firstly, it would be ideal to achieve ANIb results within the margin of error of the 

JSpeciesWS results, but this depends on the methodology clarification being expected 

from dr. Ramon Rossello-Mora and his colleagues. 

Furthermore, the stability of the program should be tested further, even though it 

does not currently exhibit any issues in this area. 

Another consideration includes a computational speed improvement. In its current 

state, our application is not making the best use of the modern multithreaded systems for 

the ANIb calculation. The JSpecies control is often somewhat faster when computing 

the ANIb parameter - therefore optimizations could definitely be made. Some possible 

improvements are quite obvious, the biggest bottleneck at the present time seems to be 

the I/O (storage) performance, this could potentially be alleviated by either using 

BLAST+ to create a custom database or storing the fragments in a data structure. The 

author decided against the first option because it adds the need to build the database 

from all of the fragments for each sequence first, which is not exactly computationally 

light. The argument against the second possible solution was a fear of oversaturating the 

memory subsysten on older or less powerful PCs, in retrospect this argument is 

somewhat flawed and not a real concern outside of very large datasets. Overall, 

performance optimization for ANIb is one of the most important future goals that will 

require a considerable time investment and experimentation. Of course, the author`s 

lack of coding experience somewhat contributes to this problem, so it can be expected 

that the application will improve with the author's abilities and experience. 

Next in line would be improving the graphical user interface. While the presently 

used is definitely serviceable, it leaves more to be desired from a practical standpoint 

such as: 

 Improving the selection management. 

 Adding support for keyboard shortcuts. 

 Adding the possibility to view results in the GUI itself without any need for 

third party applications. 

Improving the GUI from an aestethic persepctive is extremely low on the list of 

priotities, since it would not serve any practical purpose. 

 

From the functional perspective, there are some other genomic parameters worth 

exploring and possibly adding such as oligonucleotide correlation (five and six), 
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Average Amino Acid Identity (AAI) (Konstantinidis, 2005b) and the Microbial Species 

Identifier (MiSI) (Varghese, 2015). 

 

8.4 Practical usability 

With the above-mentioned limitations in mind, the resulting application is a usable 

tool for in silico sequence-based DNA comparison. As such, it will be deployed in the 

following weeks as a main sequence comparison tool in the Laboratory of Bacterial 

Generics at the National Health Institute and used for planned extensive taxonomical 

studies. 
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9 Conclusion 

Overall, all the goals of this thesis have been fulfilled with some minor caveats and 

a few compromises as summarized below and analyzed in the “Discussion” chapter. The 

best way to gauge success or lack thereof when it comes to this thesis is to recap the 

goals outlined in the “Goals” chapter and try to evaluate if and into what extent have 

they been fulfilled. 

 

9.1 Goal fulfillment evaluation analysis 

 To review theory and research behind selected in silico sequence based 

genomic parameters, their predecessors and alternatives as well as their in 

vitro counterparts and predecessors to gauge their usability, advantages and 

limitations. 

 Many papers and articles relevant to the study subject have been 

perused, although not all of them are cited. The most relevant articles 

are listed in the “Literature” section. 

 To gain deep understanding of mentioned algorithms and their inner 

workings. 

 The author managed to gain deep understanding of the methods 

involved and the theory behind them. The most relevant methods and 

algorithms are described in the “Current state” chapter. 

 Based on this review, to decide which parameters should be prioritised and 

which (if any) should be omitted. 

 The most important parameter is ANIb as it is widely regarded as a 

taxonomic gold standard.  

%GC is considered as having the second priority. While it is a 

very simple measurement, it is widely used and takes virtually no 

computational time. 

TETRA has shown some potential, while it is not as widely 

adopted as the previous ones and when it comes to conclusiveness of 

its results it lies somewhere between the two, it has proven to work 

extremely fast, in practical terms its speed is very close to that of the 

%GC. This parameter was included mainly because it has a potential 

to determine whether or not ANIb should be calculated.  

 To analyse the need for configurability to provide only relevant options 

while avoiding unnecessary options and confusing the user. 

 All of the algorithms are rigidly defined. Therefore, providing any 

configuration options that would affect results to the user would be 



78 

 

counterproductive. The initial idea to offer some of the BLAST+ 

command line parameters as configurable was implemented but later 

scrapped since it ultimately made little to no sense. It is not among 

the goals for this application to serve as a BLAST+ GUI. So in the 

end, only configuration options present in the program are related to 

paths to the blastn executable and option to change the workspace 

folder location. 

 To design a project-based saving system that will ensure data are 

preservation and accessibility while enabling the program to recover from 

non-standard termination without data corruption and loss of already 

computed results. 

 The way this application works pretty much ensures that the second 

an option is changed, or a result is computed it saves it into a file (or 

a registry key) which is simple but effective. The only data that are 

lost are the partial calculations if the program exited in a non-

standard manner during the process. 

 To design the application structure while taking speed and efficiency into 

consideration, ideally using multiple processing threads.  

 This is a partial success. While performance was always considered 

when writing the code and multithreading was implemented where 

possible, there are definitely improvements to be made. Especially 

when it comes to the ANIb parameter. 

 To design the application architecture that will fit outlined goals while being 

compatible with personal computers based on x86 processor architecture and 

running the Microsoft Windows operating system. 

 The application runs well under Microsoft Windows on standard 

personal computers. 

 To implement the solution based on the outlined design and its functional 

and non-functional specifications. 

 The implementation fulfils the vast majority of the specified 

requirements. 

 To document the implementation in a reasonable degree of detail (i.e. make 

sure that the source code snippets are not the dominant part of this thesis’s 

practical part). 

 This has been done in the “Implementation” chapter of this thesis. 

 To create a simple user manual that explains the application functionality 

from a practical standpoint. 

 This has been done in the “User manual” chapter. 
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9.1.1 The missing dendrogram 

While it might have not been noticed sadly the function to export a dendrogram is 

currently missing from the program. While UPGMA clustering and Newick format 

export have been implemented, unfortunately the author did no test the implementation 

thoroughly until the day before deadline when it became clear that it is not functioning 

properly, the problem lies either in the implementation of the clustering algorithm or in 

building the Newick file. Sadly, not enough time to diagnose and repair the problem was 

left therefore this function has been temporarily removed. The author however believes 

that it is a minor bug and the dendrogram support will be restored shortly after turning 

this thesis in.  

9.2 Future outlook 

As for what the future holds for this program, that has been proposed in the “Future 

goals” section of the “Discussion” chapter. The very distant, somewhat optimistic and 

definitely ambitious endgame would be for the NSAT application to become a capable 

and efficient DNA analysis tool supporting a wide range of parameters and functionality 

while remaining accessible to biologists who are just regular users, not programmers or 

bioinformaticians. The author's idea is to make in silico sequence as an area of 

bioinformatics more accessible. 

 

9.3 License 

Usage of this software and its source code is governed by the MIT license. 

The MIT License 

Copyright (c) 2018 Matěj Nemec 

Permission is hereby granted, free of charge, to any person obtaining a copy of this 

software and associated documentation files (the "Software"), to deal in the Software 

without restriction, including without limitation the rights to use, copy, modify, merge, 

publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons 

to whom the Software is furnished to do so, subject to the following conditions: 

 

The above copyright notice and this permission notice shall be included in all 

copies or substantial portions of the Software. 

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY 

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 
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WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS 

OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
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