
ý(6.e�9<62.e�8ý(1Ë�7(&+1,&.e�9�35$=(�

)$.8/7$�%,20(',&Ë16.e+2�,1ä(1é5679Ë�
.DWHGUD�ELRPHGLFtQVNp�LQIRUPDWLN\�

.ODGQR�����

16$7

1XFOHRWLGH�6HTXHQFH�$QDO\VLV�7RRONLW�

%DFKHORUCV�WKHVLV

�6WXG\�SURJUDPPH�� %LRPHGLFtQVNi�D�NOLQLFNi�WHFKQLND��

�)LHOG�RI�VWXG\�� %LRPHGLFtQVNi�LQIRUPDWLND

�%DFKHORUCV�WKHVLV�DXWKRU� 0DWČM�1HPHF

�%DFKHORUCV�WKHVLV�DGYLVRU�� ,QJ��-DQ�7HVDĜ

PROHLÁŠENÍ

Prohlašuji, že jsem bakalářskou práci s názvem „Název práce“ vypracoval/a

samostatně a použil/a k tomu úplný výčet citací použitých pramenů, které uvádím v

seznamu přiloženém k diplomové práci.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona

č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a

o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů.

V Kladně 17.8.2018 …...….………...………………...

 Matěj Nemec

ACKNOWLEDGEMENTS

I would like to thank anyone and everyone who helped me to make this project a

reality whether it was directly or indirectly.

I want to thank my family for supporting me during my studies and esepcially my

father for providing valued feedback. Furthemore my friends Martin Španěl and Ondřej

Košut, who both are great programmers and intelligent people deserve a special

acknowledgement for not laughing at me when I get stuck on a rather trivial problem

and instead offering advice.

I would also like to thank the staff of LBG for providing support and advice with

my thesis as well as the SZÚ instituition for giving me space a means to work on it.

My teachers from Faculty of Biomedical Engineering at CTU deserve thanks for

teaching me a lot of the thing needed to even attempt such a project and of course a

special thanks goes to my thesis advisor Ing. Jan Tesař for having the nerves to deal

with me, which is no easy feat.

And finally I would like to thank caffeine which, while it might not be the healthiest

thing on earth made finishing this thesis on time possible.

ABSTRACT

NSAT: Nucleotide Sequence Analysis Tool

This thesis is focused on in silico comparison of genomes for the purposes of

bacterial systematics. Its goal was to create a user-friendly, offline software package that

provides large-scale analysis of complete or draft whole-genome sequences. We

examined most common methods and genomic parameters used for these purposes in

order to design the application named NSAT. The selected algorithms were reviewed in

detail and broken down to the individual steps and mathematical formulas. The NSAT

program uses the Average Nucleotide Identity, Tetranucleotide frequency correlation

and GC content in percentage parameters. It was implemented in the C# programming

language using .NET framework library and compiled to run on the Microsoft Windows

platform. NSAT was designed with a simple graphical user interface and can be

operated by non-bioinformatician personnel. Its functionality and result accuracy were

tested using a set of reference sequences and found satisfactory.

Keywords

ANIb, TETRA, DNA sequence comparison, in silico, bioinformatics

7

Table of contents
List of symbols and abbreviations .. 9

1 Introduction ... 11

2 Current state.. 14

2.1 DNA and its representation ... 14

2.1.1 DNA molecule ... 14

2.1.2 DNA sequence .. 16

2.1.3 FASTA format in bioinformatics .. 17

2.2 Comparative genomics .. 19

2.2.1 Significance of bioinformatics and computational biology for

sequence data processing .. 19

2.2.2 DNA comparison methods in vitro ... 20

2.2.3 Sequence based DNA comparison methods (in silico)....................... 21

2.2.4 Need for an offline and user-friendly application............................... 36

3 Goals ... 38

4 Application design ... 39

4.1 Development process... 39

4.2 Requirement Analysis ... 39

4.2.1 Requirement specification .. 39

4.2.2 Functional specification .. 40

4.2.3 Technical specification ... 41

4.2.4 Use cases ... 42

4.3 Design .. 44

4.3.1 Domain model .. 44

4.3.2 Architecture .. 44

4.3.3 Class structure ... 49

5 Implementation ... 50

5.1 Classes ... 50

5.1.1 Project.cs ... 50

5.1.2 ANI.cs ... 53

8

5.1.3 GCC.CS... 56

5.1.4 TETRA.cs ... 57

5.1.5 GlobalSettings.cs... 62

5.1.6 MainWindow.xaml.cs ... 62

5.1.7 SelectionWindow.cs and GCSelectionWindow.cs 63

5.1.8 Other windows .. 64

6 User manual .. 65

6.1 Program installation .. 65

6.2 BLAST+ installation ... 65

6.3 Step-by-step user guide ... 65

7 Results and testing .. 71

7.1 Testing .. 71

7.1.1 Unit testing .. 71

7.1.2 User testing ... 71

8 Discussion .. 73

8.1 User testing ... 73

8.2 Result analysis .. 73

8.2.1 ANIb results analysis .. 73

8.2.2 %GC results analysis .. 74

8.2.3 TETRA results analysis .. 74

8.3 Future goals ... 75

8.4 Practical usability .. 76

9 Conclusion ... 77

9.1 Goal fulfillment evaluation analysis ... 77

9.1.1 The missing dendrogram ... 79

9.2 Future outlook ... 79

9.3 License .. 79

Literature used .. 81

9

List of symbols and abbreviations

List of symbols

Symbol Unit Meaning

Tm °C Melting point at which the DNA strands separate

∆Tm °C Difference between the melting points

List of abbreviations

Abbreviation Meaning

rRNA Ribosomal RNA

DDH

ANI

ANIb

ANIm

%GC

BLAST

XNA

A

T

G

C

IUPAC

IUB

NCBI

 BLOSUM

PAM

HSP

DNA-to-DNA hybridization

Average Nucleotide Identity

Average Nucleotide Identity based on the BLAST algorithm

Average Nucleotide Identity based on the MUMmer algorithm

Content of G a C bases in the examined sequence in percent

Basic Local Alignment Search Tool

Xeno nucleic acid

Adenine

Thymine

Guanine

Cytosine

International Union of Pure and Applied Chemistry

International Union of Biochemistry

National Center for Biotechnology Information

Blocks Substition Matrix

Point Accepted Mutation

High Scoring Pair (BLAST context)

10

b

Kb

TETRA

UI

GUI

SZU

LBG

UPGMA

IDE

r

WPF

Newick

UML

BLASTN

AAI

MiSI

MIT

NSAT

I/O

DNA base

Kilo-base – 1000 DNA bases

Tetranucleotide frequency correlation coefficient

User Interface

Graphical User Interface

Czech National Health Institute (Státní Zdravotní Ústav)

Laboratory of Bacterial Genetics at SZU

Unweighted Pair Group Method with Arithmetic Mean

Integrated Development Enviroment

Pearson`s correlation coefficient

Windows Presentation Foundation

New Hampshire tree format

Universal Modelling Language

Nucleotide BLAST

Average Amino Acid Identity

Miscrobial Species Identifier

Massachusetts Institute of Technology

Nucleotide Sequence Analysis Tool

Input/Output

11

1 Introduction
Systematics of bacteria has always depended on developments in other scientific

disciplines. Following the discovery of its structure in the early 1950s, DNA has been

gradually established as the most relevant marker used for comparative studies in

bacterial taxonomy. Its first application was the determination of the guanine-cytosine

content (%GC) of bacterial chromosomes, which was followed by the introduction of

rRNA-DNA and DNA-DNA hybridization assays, and later of the sequence analysis of

essential, house-keeping genes encoding 16S rRNA or proteins.

Quantification of genetic relatedness by DNA-DNA hybridization (DDH) became a

basic tool for the classification of bacteria at the species level in the 1980s. In their

Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial

Systematics (Moore, 1987), postulated that the phylogenetic definition of a species

generally would include strains with approximately 70% or greater DNA-DNA

relatedness and with 5°C or less ∆Tm (difference in melting temperature between hybrid

mixture and control). Skackebrandt and Goebel (STACKEBRANDT, 1994) then

suggested that 16S rRNA sequence similarity of less than 97% between bacterial

organisms indicates that they represent different species, whereas at 97% or higher 16S

rRNA similarity, DDH must be used to determine whether they belong to one species.

Thus, the combination of DDH and 16S rRNA analysis has been established as a gold

standard for the phylogenetic classification of bacteria and become an essential

methodical component in descriptions of novel species.

Despite the crucial role of DDH in the developments of modern taxonomy, this

technique suffers from methodical and methodological limitations that hamper a more

effective and accurate extraction of the taxonomic information embedded in genomic

DNA. DDH is technically demanding while diverse methods developed to perform it

can yield different results, especially for lower hybridization values. However, the main

drawback of this technique is its comparative nature. As similarity (DNA-DNA

relatedness) values are the results of laboratory experiments, no incremental databases

can be built. This contrasts with the situation of sequence analysis, when similarity

values are obtained through computer-based comparison of digitized DNA sequences.

In the aforementioned article, Wayne wrote that there was general agreement that

the complete DNA sequence would be the reference standard to determine phylogeny

and that phylogeny should determine taxonomy (Moore, 1987). Although this claim was

not practically achievable until the dawn of the new millennium, the recent introduction

and development of high-through-put, next-generation sequencing techniques have

completely changed the situation. Nowadays, obtaining a nearly complete bacterial

genome sequence is almost a routine procedure while techniques for the determination

of a complete genome sequence are easily available.

12

The high speed and low cost of draft genome sequencing have motivated

taxonomists to search for in silico methods of genome comparison that would eliminate

the drawbacks associated with conventional DDH. Several parameters have been

developed to compare genome sequences for species circumscription, of which the

average nucleotide identity(ANI) (Konstantinidis, 2005a) has been most commonly

applied in taxonomic studies. ANI score calculation can be achieved using two different

algorithms. One is ANI based on BLAST searches of ca. 1 kb genome fragments (that

mirrors the fragmentation of genomic DNA during conventional DDH experiments)

against a target genome, ANIb (Klappenbach, 2007), whereas the other one is based on

the MUMmer algorithm, ANIm (Richter, 2009), which is of higher speed and does not

require the artificial generation of 1 kb fragments. Although both algorithms give

nearly identical values in the high identity range (90–100%), their results diverge for

less similar genomes and in these cases the ANIb algorithm appears to produce more

accurate results (Richter, 2009). Of the two ANI variants, ANIb is currently considered

a standard (Rosselló-Móra, 2015).

In the last few years, several web applications allowing for the determination of

ANI and some additional parameters have been released. The first was the JSpecies

software (Jspecies, 2009) written in the Java programming language (Richter, 2009) and

runs locally on Linux or Microsoft Windows. Even though it is able to calculate ANIb,

ANIm, tetranucleotide frequency and %GC and provides a polished graphical interface

(e.g. to show the distributions of fragments according to ANI values), it suffers from

several flaws. These include the inability to run MUMmer algorithm (and therefore

calculate ANIm) under Windows, incorrect calculation of %GC and a rather low

number of sequences (less than 20) for which mutual ANIb values can be factually

calculated under Windows. A newer, online version of the program termed JSpeciesWS

(JspeciesWS, 2015) (Rosselló-Móra, 2015) has solved some of these problems but still

enables only a limited maximum number (15) of sequences to be compared, which

precludes the comparison of larger genome sets for comprehensive taxonomic studies.

Although other online applications that offer ANI calculation are currently available,

they also suffer from the capacity problem.

My motivation for this thesis arose from discussions with the scientific team of the

Laboratory of Bacterial Genetics (National Institute of Public Health, Prague). The team

members drew my attention to the practical limits of the presently available applications

in the situation when the number of genomes to be compared grows quickly. It became

apparent that there was a need for an offline bioinformatics package capable of

computing standard genomic parameters for large sets of genomes, which would be

flexible enough to set important variables or select genomes to be compared as well as

provide a graphical representation of the overall similarity between sequences based on

cluster analysis. Although none of these components is original, the planned software

package has a clearly defined purpose and promises to fill an important methodical gap.

13

The goal of this thesis is to design, implement, test, and release a bioinformatics

toolkit with graphic user interface, the main functionality of this application lies in

comparing genomic parameters between the nucleotide sequences of bacterial whole

genomes. The toolkit will be written in C# programming language as a Microsoft

Windows application supporting Windows 7 and newer, requiring an x86 architecture

CPU to run the program.

14

2 Current state

2.1 DNA and its representation

2.1.1 DNA molecule

DNA (deoxyribonucleic acid) is a molecule present in every known living cellular

organism. Initial discovery of the molecule dates back to late 1860s but its significance,

function and structure was understood almost a century later. Most notably, model of its

double helix structure was first introduced by Watson and Crick in 1953 (A. Pray,

2008). We could argue that DNA is a prerequisite for life as we know it, although there

are successful attempts to create a synthetic DNA-like XNA molecule, which differs

from DNA by replacing deoxyribose in the backbone with a different sugar molecule,

suggesting that there is a possibility of XNA based life (Edited by Markus Schmidt.,

2012).

DNA serves as a blueprint for the entirety of the organism in question, guiding its

development from single cell to its final form. Its structure consists of four different

nitrogen bases: adenine (A), cytosine (C), guanine (G) and thymine (T), which are

connected by a sugar (deoxyribose)-phosphate backbone that binds them into a dual

strand structure called the double helix. These molecules form two sets of base pairs: A-

T and G-C. Each base from the base pair is part of an opposing strand (Zvelebil, 2008)

 Figure 2 G-C base pair (G-C DNA bae pair, 2010)

 Figure 1 A-T base pair (A-T DNA base pair, 2007)

15

While A-T base pair has two hydrogen non-covalent bonds as evident from figure

1, the G-C pair has three non-covalent hydrogen bonds (figure 2). This makes the bond

between G and C stronger and therefore harder to break; this fact is important for

several reasons into which we will delve later on. At the same time, both types of bonds

are still relatively weak as they are non-covalent, therefore much less energy is required

to destabilize and break the non-covalent bonds between the two parts of the helix

(horizontally) than it is needed to break apart individual strands (vertically).

This fact is important during transcription and translation, because the enzymes

participating in those processes split the strands effectively by “unzipping” the double

helix (Zvelebil, 2008).

During the process of transcription, complementary DNA strands are separated by

an enzyme called helicase and transcribed by DNA-dependent RNA polymerase into

RNA (ribonucleic acid), which is a molecule similar to DNA. RNA differs from DNA in

(i) replacing the T base with uracil (U), (ii) replacing deoxyribose with ribose and (iii)

being single stranded.

Figure 4 DNA double helix chemical structure
(DNA structure detail, b.r.)

Figure 3 DNA double helix structure (DNA
structure detail, b.r.)

16

DNA-dependent RNA polymerase reads the so-called anti-coding strand from 3’ to

5’ end to achieve RNA strand in 5’ to 3’ orientation. The coding strand in DNA is

defined as the strand corresponding to translated RNA sequence with U replaced with T

(Zvelebil, 2008).

The translation process enables the translation of the messenger RNA (mRNA),

which is the type of RNA transcribed from a protein coding gene. A particular gene is

considered expressed once it is used to synthetize a functional product; this product can

¨í (dividing one DNA molecule into two by splitting its complementary strands and

recreating their respective complements) followed by DNA transcription and RNA

translation processes along with their inner workings is referred to as “Central dogma of

molecular biology“ (Figure 5).

2.1.2 DNA sequence

The structure of a DNA (or nucleotide) sequence is defined by an order in which

individual bases appear in a DNA strand (either strand can be used since they are

complementary) from the 5’ end, which is the end of the strand with a phosphate group

on the 5th carbon of the deoxyribose molecule, to the 3’ end, the one with a free

hydroxyl group on the 3rd carbon of the deoxyribose molecule (Figure 6) (Zvelebil,

2008).

Figure 1 Central dogma of molecular biology (Central dogma of molecular
biology, 2013)

17

This sequence is traditionally represented as a string of characters using G, C, A or

T as abbreviations of respective base pairs and other characters for different levels of

uncertainty (IUPAC-IUB Comm. on Biochem. Nomencl, 2002).

2.1.3 FASTA format in bioinformatics

In bioinformatics, sequences are most often saved as files in the FASTA format,

which contains a sequence string in text format, with a header that provides an

identification of the given organism. The header usually consists of the species name

and designation of the genome or its part. Furthermore, the multi FASTA format is often

used; it combines more than one FASTA records with corresponding headers in one file.

This format is typically used with incomplete genomes (which still represent vast

majority of genomes in the NCBI database) (FASTA format - NCBI, b.r.). In the

following example, you can see a FASTA file with a header containing the accession

number for the NCBI nucleotide database along with a species name and strain

designation.

Figure 2 DNA orientation (DNA 3' 5' end, 2013)

18

Example in Figure 7 illustrates an ungapped sequence, which is not always the case.

Many sequences end up with an incomplete sequence with possible errors, gaps or

unclear bases. In a gapped sequence, gaps are substituted with letter “N” (one per one

missing base) (Figure 8).

The amount of characters inserted should be the same as the amount of

undetermined bases or correspond to gap length.As the actual gap length is not always

known, it is common practice to use a string of 100 N characters instead (FASTA

format - NCBI, b.r.). There are other characters that can be used to specify the level of

uncertainty; these are listed in Table 1 (IUPAC-IUB Comm. on Biochem. Nomencl,

2002). Note that the X (standing for A, G, C or T) character is rarely used.

>CP014266.1 Acinetobacter baumannii strain Ab421_GEIH-
2010 genome

TGTGGATAACTTGGGTAGAATGGCGACCCCTTCTCATCAGGAAGGGTTAATCTTT
AAATGATTTGAATTTAAAACGCAGACATAGGGGATACACATGCTTTGGACAGACTGCTT
AACTCGCTTGCGACAAGAGCTCTCTG

ATAACGTCTTTGCGATGTGGATTCGCCCTTTAGTAGCTGAAGAAGTAGAGGGGAT
ACTACGTCTCTATGC

TCCTAATCCTTATTGGACGCGTTATATTCAAGAGAATCATTTAGAGTTAATTTCT
ATATTGGCTGAACAA

>CP014266.1 Acinetobacter baumannii strain Ab421_GEIH-
2010 genome

TGTNNNNNACTTGGGTNNNNNNGCGACCCCTNNNNATCAGGAAGGGTTAATCTTN
NAATNNTTNGAATNNAANNNGCAGACATAGGGGNTACACATGCTTTGGACAGACTGCTT
AACTCGCTTGCGACAAGAGCTCTCTG

ATAACGTCTTTGCGATGTGGATTCGCCCTTTAGTAGCTGAAGAAGTAGAGGGGAT
ACTACGTCTCTATGC

TCCTAATCCTTATTGGACGCGTTATATTCAAGAGAATCATTTAGAGTTAATTTCT
ATATTGGCTGAACAA

Figure 3 Ungapped sequence in FASTA format

Figure 4 Sequence with gaps in FASTA format

19

G Guanine

A Adenine

T Thymine

C Cytosine

R A or G (Purine)

Y C or T (Pyrimidine)

M A or C (Amino)

K G or T (Ketone)

S C or G (Strong)

W A or T (Weak)

H Not G

B Not A

V Not T

D Not C

N Any (Undetermined)

Table 1 FASTA allowed characters

In this thesis, DNA sequences used will be presented exclusively in FASTA format,

which will also serve as the only allowed input format for the resulting application.

2.2 Comparative genomics

2.2.1 Significance of bioinformatics and computational biology for
sequence data processing

Due to tremendous increase in speed, reliability and consistency of DNA (and

RNA) sequencing, the increase in available sequence data is astronomical even when

looking back only a few years (Heather, 2016). With advent of third generation

sequencing, it is possible to obtain whole-genome sequences in matter of hours at a

relatively low cost and with low enough error rate (Land, 2015).

The resulting situation sees an exponentially increasing amount of unprocessed

sequence data, which on their own have no value, therefore it is necessary to interpret

20

them and understand their significance. This is where computational biology and its

tools come in.

Inception of comparative genomics with advent of new technologies such as DNA

sequencing, various bioinformatics methods and algorithms for sequence comparison

and analysis has led to previously unimaginable advances in speed and efficiency of

taxonomic classification. One of the most influenced organism groups was the bacteria

domain, which also happens to be quantitatively the largest domain, with estimated

number of distinct species between hundred billion and one trillion (Locey, 2016). An

estimation that is somewhat supported by new bacteria species and subspecies being

discovered on regular basis.

This thesis is focusing on the application of computational biology on bacterial

DNA sequences and determining their relatedness by computing the selected genomic

parameters, also known as comparative genomics. This is a universal approach not

limited to bacteria domain, instead it is applicable to any living organism and even

viruses (RNA can be studied and compared in similar fashion). It is important to note

that phylogeny and taxonomy by extension is just one of many possible applications of

computational biology and bioinformatics.

2.2.2 DNA comparison methods in vitro

DNA-DNA Hybridization

One of the first methods for determining the relatedness of given organisms based

on their DNA structure and the only method not based not requiring sequence data

knowledge that is still relevant today is DNA-DNA hybridization (DDH).

The process starts with labelling query DNA using a photoreactive or radioactive

substance. The query DNA is then mixed with the target DNA and heated up to a

temperature that results in breaking the hydrogen bonds between bases and therefore

separating both DNA molecules into single strands. This melting temperature is noted as

𝑇 . (Rosselló-Móra, 2011). 𝑇 can be further lowered by adding different chemicals to

the mixture such as formamide (Bouvier, 2003). 𝑇 as a measurement of DNA stability

directly correlates with %GC content, since there are three hydrogen bonds in G-C base

pair as opposed to only two in A-T pair. As a result, more energy is required to break

the bonds in GC pairs, therefore substituting AT with GC results in raising 𝑇 for the

DNA molecule in question.

21

Mixture is then cooled back to a temperature that allows strands to re-join. This

results in creation of DNA hybrids where a double helix is formed with one strand from

query and one strand from target DNA. The relative amount of hybrids created is

expressed in percent and is one of the two requirements for determining whether or not

query and target DNA represent the same species with a cut-off at 70% (Moore, 1987).

In the next step, the mixture is reheated to point of hybrid strand separation.

Difference between 𝑇 of a target sequence and 𝑇 of the hybrids (∆𝑇) is the second

parameter to determine relatedness at the species level, with the intraspecies values of

≥5 °C (Moore, 1987).

Disadvantages of this method stem from the need for a lot of wet work with

expensive and highly specialized lab equipment. But its main flaws are the inability to

exactly replicate conditions in which the experiment has been performed (which can

lead to skewed and inaccurate results) and an impossibility to create incremental

databases.

2.2.3 Sequence based DNA comparison methods (in silico)

There are two options when it comes to sequence comparison.

First one is to use parameters that are calculated for sequence A and compare those

values with the same values calculated for sequence B. An example is %GC.

The second one is to calculate pairwise parameters that are relative and pertain only

to a given pair of sequences. An example of this is ANI.

The big advantage of the first case is that all we need to know are parameter values

for A and B and we can draw comparison from this information with a simple

calculation. In the second case, we need to calculate the parameter for each unique pair.

This in turn leads to an exponential increase in required computing resources. For

example, when we are trying to determine relatedness for a given dataset, we need to

calculate the selected parameter for every unique pair of sequences. Of course, the

second method tends to be more accurate, since when drawing conclusion from a single

parameter, a great loss of information occurs as the sequence in question has been

reduced and simplified to be presented as a single value or a set of values.

The following parameters are the most important ones used in comparative

genomics and regarded as the gold standards for taxonomic purposes.

22

GC percentage

%GC is a percentage measurement of amount of G-C base pairs relative to the total

amount of base pairs, that are conclusive in regard to being G or C, or not. This means

that the only characters used for this calculation are A, C, T, G, S (representing G or C)

and W (r. A or T). All other characters like Ns for gaps and other more specific

uncertainty symbols are therefore omitted, since their inclusion would skew results. The

resulting formula for calculating %GC in any sequence in proper FASTA format is:

∑ 𝐺 + ∑ 𝐶 + ∑ 𝑆

∑ 𝐴 + ∑ 𝐶 + ∑ 𝑇 + ∑ 𝐺 + ∑ 𝑊 + ∑ 𝑆
× 100

In an ungapped nucleotide sequence with all bases conclusively identified (only A,

C, T or G), this is an equivalent to:

∑ 𝐺 + ∑ 𝐶

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔ℎ𝑡
× 100

While this value has been shown to be very similar in closely related bacteria, it can

also be similar in phylogenetically very distant bacteria (Nishida, 2012). For this reason

(low information complexity), %GC cannot be used alone as a relatedness defining

genomic parameter although it is still used to supplement other, more robust parameters

or to serve as a preliminary parameter to decide whether further genome analysis should

be performed.

Sequence alignment and BLAST algorithm

Sequence alignment refers to a way of arranging two sequences (DNA, RNA or

protein) in a way to overlay and compare regions of similarity. The idea behind

sequence alignment is that these aligned regions will help to determine functional and/or

evolutionary relationship between sequences, therefore estimating their relatedness and

functional similarity.

When it comes to the algorithms used to align two sequences there are two main

families of them – algorithms based on dynamic programming and heuristic algorithms.

23

2.2.3.1.1 Dynamic programming algorithms

Dynamic programming is a method that solves complex problems by breaking them

down into in to simpler sub-tasks often utilizing recursion. A proper dynamic

programming algorithm is guaranteed to find an optimal (best) solution, which is also

the main advantage. Their main disadvantage lies in being compute heavy.

2.2.3.1.1.1 Needleman-Wunsch algorithm

Needleman-Wunsch algorithm is one of the first algorithms that were used for

sequence comparison (Needleman, 1970). This is a global alignment algorithm, which

means that it aligns two sequences in their entirety – from beginning to the end. As such

it is suited for aligning two closely related (highly similar) sequences.

Since Needleman-Wunsch is a dynamic programming algorithm, it breaks down the

alignment problem into smaller and simpler issues and then reconstructs the solution.

The process itself is best demonstrated on an example:

1. Consider two short nucleotide sequences:

I. CGTGAATTCAT; the first sequence with the length(n) of 11 bases.

II. GACTTAC; the second sequence with the length(m) of 7 bases.

2. Construct a matrix with dimensions of (n+1)×(m+1). One additional field is

added to each sequence because we need to consider aligning with a gap at the

start. Resulting matrix will look like this:

X _ C G T G A A T T C A T

_

G

A

C

T

T

A

C

Table 2 Needleman-Wunsch blank

3. Determine a scoring schema – this can be user defined and will assign different

scores if:

24

I. Both nucleotides match (ex. A – A). In this case our score will be +1.

II. Nucleotides do not match (ex. A – G). Our scoring system will assign -1

to a mismatch.

III. We align a base in sequence A with a gap inserted into sequence B or

vice versa. This is called the gap open penalty and in our example is set

to -1.

Why would we do this? This is supposed to represent and indel – a

type of genetic mutation that results in deleting or inserting a base

from/into the genome. Since the idea behind sequence alignment is

comparing equivalent regions, we need to consider this case.

4. Initialize the matrix and fill the first row and column. First cell (1;1) is assigned

0, since this corresponds to starting the alignment with one gap at the start of

each sequence, which is the same as starting from the beginning with no gaps.

The rest of the scores in the first row and the first column represents the number

of gaps inserted. For example, to align the third base of the A sequence with the

first base of the B sequence, we need to insert two gaps at the beginning of the

second sequence, therefore cell (1;3) has the value of -2.

X _ C G T G A A T T C A T

_ 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

G -1

A -2

C -3

T -4

T -5

A -6

C -7

Table 3 Needleman-Wunsch first row/column

5. Fill the matrix. This is a crucial step, now we will fill the rest of the matrix

starting from the top left corner based on values of the three neighbouring cells

(left, left diagonal and top). We are looking for the highest assumed score out of

the three. These assumed scores are obtained by:

I. Adding the match/mismatch score (further denoted as S) to the left

diagonal cell value.

25

II. Adding (it should always be 0 or negative) the gap penalty (further

denoted as W) to the left cell value.

III. Adding the gap penalty to the top cell value.

The mathematical formula for filling each remaining cell is:

𝑀 , = 𝑀𝑎𝑥(𝑀 , + 𝑆 , , 𝑀 , + 𝑊, 𝑀 , + 𝑊)

where 𝑀 , is the field in question with its respective coordinates.

After determining the maximum value, we will use a pointer to illustrate

from which field did the value originated. This information is very important.

Quite often, there will be two or even three same (maximal) values. In this case,

we will use multiple pointers to all the fields the maximum value was

extrapolated from.

X _ C G T G A A T T C A T

_ 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

G -1 -1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

A -2 -2 -1 -1 -2 -1 -2 -3 -4 -5 -6 -7

C -3 -1 -2 -2 -2 -2 -2 -3 -4 -3 -4 -5

T -4 -2 -2 -1 -2 -3 -3 -1 -2 -3 -4 -3

T -5 -3 -3 -1 -2 -3 -4 -2 0 -1 -2 -3

A -6 -4 -4 -2 -2 -1 -2 -3 -1 -1 0 -1

C -7 -5 -5 -3 -3 -2 -2 -3 -2 0 -1 -1

Table 4 Needleman-Wunsch filled

6. Traceback. Now we need to determine the most optimal alignment (or

alignments, since there can be more than just one). This step is simple – we

follow previously created pointers (arrows) from the right bottom cell of the

matrix to the right top cell. Rules for different arrow orientation are following:

I. Diagonal arrow signifies match or mismatch. This means that in the case

of a diagonal arrow, bases are aligned. For example, in our matrix the last

bases of both sequences (T and C) are aligned since there is variation in

every traceback, because there is only a diagonal arrow originating from

the field of their intersection (bottom right).

II. Horizontal and vertical arrows represent indels. This means that a gap is

added to the appropriate sequence. Horizontal arrow adds a gap to the top

26

or horizontal sequence, while vertical one adds a gap to the left side or

vertical sequence.

III. In the case of multiple arrows originating from a single cell, we are left

with two or more alignments. To determine the best alignment or

alignments, we will score the traceback route – again the scoring schema

here can be user defined.

IV. Similarity matrices are a special case of a scoring schema. These allow

to specify different scores for alignments of different bases. For example,

a G-G pairing can be given a high score of 5, while an A-A pair will only

be awarded 2. The two most known and used groups of scoring matrices

BLOSUM and PAM (Pearson, 2002) are made for protein sequence

alignment. However, such matrices can also be useful when dealing with

nucleotide sequences. Reasoning behind this is that some mutations are

more likely to occur than others – in DNA the G-T mispair is the most

common, since the chemical bonds between bases can rearrange in a way

that makes the pairing almost as energy efficient as the “standard” pairs

(Kimsey, 2018).

V. Gap extension penalty is a special case of gap penalty that is used when

there are gaps longer than one base. In case like this, it is not optimal for

the penalty to grow linearly, instead gap extension penalty is usually

lower than gap open penalty.

Traceback route for our example is denoted with yellow arrows in the

following table.

X _ C G T G A A T T C A T

_ 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

G -1 -1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

A -2 -2 -1 -1 -2 -1 -2 -3 -4 -5 -6 -7

C -3 -1 -2 -2 -2 -2 -2 -3 -4 -3 -4 -5

T -4 -2 -2 -1 -2 -3 -3 -1 -2 -3 -4 -3

T -5 -3 -3 -1 -2 -3 -4 -2 0 -1 -2 -3

A -6 -4 -4 -2 -2 -1 -2 -3 -1 -1 0 -1

C -7 -5 -5 -3 -3 -2 -2 -3 -2 0 -1 -1

Table 5 Needleman-Wunsch traceback

7. We can see that there is one cell with two pointers originating from it, thus

enabling two branching paths, that represent two equally viable alignments (gap

is denoted by X):

I. C G T G A A T T C A T

27

X X X G A C T T X A C

II. C G T G A A T T C A T

X G X X A C T T X A C

To determine the most optimal alignment, we will be using a scoring

schema of +5 for match, -1 for mismatch and -2 for gap open and -1 for gap

extension. This translates to score of 14 for both the first and second alignments.

Therefore, both possible alignments are equally viable. (Bioinformatics and

molecular evolution, 2005)

2.2.3.1.1.2 Smith-Waterman

The main difference between Needleman-Wunsch and Smith-Waterman algorithms

stems from the fact that the former compares two sequences using global alignment,

while the latter uses local alignments to compare regions of high enough similarity.

Smith-Waterman algorithm is a dynamic programming algorithm and works in

similar fashion to Needleman-Wunsch, any important differences will be accentuated in

the following step-by-step breakdown. The same two sequences will be used for

comparison:

1. Consider two short nucleotide sequences:

I. CGTGAATTCAT; the first sequence with the length(n) of 11 bases.

II. GACTTAC; the second sequence with the length(m) of 7 bases.

2. Construct a matrix with dimensions of (n+1)×(m+1). One additional field is

added to each sequence because we need to consider aligning with a gap at the

start. The resulting matrix will look like this:

X _ C G T G A A T T C A T

_

G

A

C

T

T

A

C

Table 6 Smith-Waterman blank

28

3. Initialize the matrix. First row and first column are filled with zeros:

X _ C G T G A A T T C A T

_ 0 0 0 0 0 0 0 0 0 0 0 0

G 0

A 0

C 0

T 0

T 0

A 0

C 0

Table 7 Smith-Waterman first row/column

4. Determine scoring schema. Our scoring schema will be +5 for a match and -3 for a

mismatch. Match/mismatch is again denoted as S. For gap penalty, we will use a

value of -4. Again, this schema can be changed based on different scoring tables or

personal preference, however mismatch and gap penalty should always be negative.

5. Fill the rest of the matrix.

The formula for calculating values of the remaining cells is:

𝑀 , = 𝑀𝑎𝑥(𝑀 , + 𝑆 , , 𝑀 , + 𝑊, 𝑀 , + 𝑊, 0)

The main difference compared to Needleman-Wunsch lies in adding 0 into

the formula. In practice, this ensures that there will be no cells in the matrix that

contain a negative value. The aforementioned distinction is what enables the

local alignment rather than global, since cells that would otherwise have a

negative score signify that there is no similarity between the sequences up to this

point. This cell is then set to 0 to ensure that it will have no effect on its

successors, which will allow the alignment to start from any position.

29

X _ C G T G A A T T C A T

_ 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 5 1 5 1 0 0 0 0 0 0

A 0 0 1 2 1 10 6 2 0 0 5 1

C 0 5 1 0 0 6 7 3 0 5 1 2

T 0 1 2 6 2 2 3 12 8 4 2 6

T 0 0 0 7 3 0 0 8 17 13 9 7

A 0 0 0 3 4 8 5 4 13 14 18 14

C 0 5 1 0 0 4 5 2 9 18 14 15

Table 8 Smith-Waterman filled

6. Traceback. To start tracing the alignment, we first need to find the cell or cells

with the highest score in the matrix. Traceback starts from this cell; if there are

multiple occurrences, there will be two or more possible alignments. Alignment

ends with a pointer to zero. In the given example, there are two cells with value

of 18 which is the highest score in the matrix. Therefore, there will be, at the

very least, two possible alignments.

X _ C G T G A A T T C A T

_ 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 5 1 5 1 0 0 0 0 0 0

A 0 0 1 2 1 10 6 2 0 0 5 1

C 0 5 1 0 0 6 7 3 0 5 1 2

T 0 1 2 6 2 2 3 12 8 4 2 6

T 0 0 0 7 3 0 0 8 17 13 9 7

A 0 0 0 3 4 8 5 4 13 14 18 14

C 0 5 1 0 0 4 5 2 9 18 14 15

Table 9 Smith-Waterman traceback

(Note that we could start another alignment from the second highest value

and another from the third highest etc. The resulting alingments are inferior in

their optimality but under certain conditions can provide relevant information)

7. Green arrows represent the alignment start while yellow ones continue the

traceback.

The orange arrow represents the pointer to zero that ends the local

alignment. The pointer significance is the same as in the case of Needleman-

Wunsch – a diagonal pointer represents aligning of the intersecting bases, while

horizontal and vertical ones add a gap to the respective sequence.

30

As we can clearly see, we are left with two possible alignments. To further

determine the most optimal one, we will again score both alignments this time

with the same scoring schema that was used to construct the matrix (+5 for a

match, -3 for mismatch, -4 gap penalty).

I. G A A T T C A

G A C T T X A

II. G A A T T X C

G A C T T A C

Resulting score is 18 for both alignments, which again signals that both are

the most optimal. (Bioinformatics and molecular evolution, 2005)

2.2.3.1.2 BLAST

BLAST or Basic Local Alignment Tool is the most used application for sequence

searching and alignment. Its popularity stems from the fact that it uses a heuristic

method to approximate, with precise enough results, the Smith-Waterman algorithm all

the while making it over 50 times faster than the actual algorithm.

While Smith- Waterman algorithm would be the preferred choice since it

guarantees to find the optimal match between two sequences based on the selected

scoring matrix (basic matrix “rewards” a nucleotide match with increase the total score

by one and penalizes mismatch by decreasing it by one), BLAST due to its heuristic

nature does not.

The problem with the Smith-Waterman algorithm lies in its high computational

cost. The time and space complexity of the original algorithm is 𝑂(𝑎 𝑏) and 𝑂(𝑎𝑏),

respectively, where a and b are the lengths of two sequences used for the alignment

(Smith, 1981). Even though the algorithm has been since optimized for time complexity

of 𝑂(𝑎𝑏) (Altschul, 1986) and space complexity of 𝑂(𝑎), where a represent length of

the shorter sequence (Myers, 1988), it is still not feasible to use with larger datasets.

BLAST algorithm works on a “seed and grow” principle, which means that instead

of trying to align one sequence to another as whole, the algorithm looks for short

regions that are very similar between the two sequences. In the case of BLAST, the

distinction between target and query sequences becomes more important since swapping

these roles slightly, but noticeably influences the result, the reason for this will become

more apparent in the following algorithm description:

1. (Optional) Remove regions of low complexity

31

This process (also called dedusting in nucleotide sequences) uses external

programs DUST (for DNA) and SEG (for protein) to remove regions of low

complexity consisting of long single base repeats or repeated patterns. These

regions will make the high complexity ones less significant and therefore can

impact the results in a negative way (reduce accuracy) while in most cases, more

complex regions are significantly more important for sequence comparison (in

DNA, they are much more likely to be functional).

2. Determine initial seed length

The length of the initial seed is given by the parameter Word length (k) –

one of the user configurable BLAST parameters. In the context of DNA

sequences, a word size of 11 is commonly used, while for protein lower values,

starting at three are usually used.

3. Create a list of unique k letter words

The next step is to compile a list of all unique k letter words from the query

sequence. This is achieved by reading the query sequence starting on the first

base and ending on the kth base (where k is the word length), in the next step

reading starts from the second base and this process is repeated until the end of

the sequence is reached and the list contains all the unique k letter words that

exist within the give sequence.

4. Score the pairs and create HSP list

After successfully creating the unique k letter word list, its members are

compared with all the possible k letter words (for DNA sequence there is 11 of

them) and scored according to a scoring matrix like BLOSUM 62 for protein

sequences. This is where another parameter Threshold T is used. Instead of

returning list of all possible pairs and their respective scores, only “High Scoring

Pairs” (HSPs) – pairs with score higher than value of T – are returned.

HSPs are in this context x, y pairs, where a is an existing k-letter word in

the query sequence and y can be any of the possible k-letter words. Their score is

based on their similarity, which is determined by aligning x with y in an

ungapped alignment and summing user defined match/mismatch scores for all k

bases. Threshold T is then applied to the resulting score, if their score is greater

or equal x, y pair in question is considered a HSP.

HSP creation is repeated for every unique k letter word from the query

sequence; the y words from all HSPs are then taken and saved into a list as

potential seeds.

32

5. Seeding

Algorithm then enters the seeding phase searching for exact k letter word

matches between the potential seed list and the database (target sequence). These

matches between query sequence and database are designated as seeds.

6. Seed extension

After seeding is concluded, BLAST algorithm starts to extend the initially

aligned seeds and depending on set gap penalty, mismatch penalty and rewards

for HSP matches or connecting with another seed the alignment score increases

or decreases. The extension will stop when the cumulative score for the

alignment in question drops below T level.

 (Mclean, 2004) (Altschul, 1990)

Resulting alignments can be formatted to one of many BLAST applications output

formats and further analysed and interpreted (BLAST® Command Line Applications

User Manual, 2008).

Average Nucleotide Identity based on BLAST (ANIb)

Average nucleotide identity is a genomic parameter created to simulate DNA-DNA

hybridization in silico (Richter, 2009). The implementation in this thesis is based on the

BLAST algorithm described in the previous section.

The implementation of ANI based on BLAST requires some extra steps; the exact

methodology was described by Klappenbach et al. as follows:

“The genomic sequence from one of the genomes in a pair (‘the query’) was cut

into consecutive 1020 nt fragments. The 1020 nt cut-off was used to correspond with the

fragmentation of the genomic DNA to approximately 1 kb fragments during the DDH

experiments. The use of different cut-offs (e.g. smaller fragments) did not notably modify

our results (data not shown). The 1020 nt fragments were then used to search against

the whole genomic sequence of the other genome in the pair (‘the reference’) by using

the BLASTN algorithm the best BLASTN match was saved for further analysis.

The BLASTN algorithm was run using the following settings: X=150 (where X is the drop-

off value for gapped alignment), q=−1 (where q is the penalty for nucleotide mismatch)

and F=F (where F is the filter for repeated sequences); the rest of the parameters were

used at the default settings. These settings give better sensitivity than the default settings

when more distantly related genomes are being compared, as the latter target sequences

that are more similar to each other.

….

33

The ANI between the query genome and the reference genome was calculated as the

mean identity of all BLASTN matches that showed more than 30 % overall sequence

dentity (recalculated to an identity along the entire sequence) over an alignable region

of at least 70 % of their length. This cut-off is above the ‘twilight zone’ of similarity

searches in which an inference of homology is error prone because of low levels of

similarity between aligned sequences. Therefore, we can assume that only homologous

DNA fragments were considered in our calculations.” (Klappenbach, 2007)

Based on the cited methodology the step-by-step process for computing the ANIb

values in a pairwise comparison is:

1. Load the two sequences A as the query and B as the target or database.

2. Chop the A (query) sequence into 1020 base fragments (the last fragment will

likely end up shorter).

3. BLAST every fragment of A one by one (ideály concurrently using

multithreading) against the complete B (target) sequence using the parameters

specified above.

4. Check the results:

I. If the length of the resulting alignment is at least 70% of the overall

fragment length (fragment length divided by the length of the alignment

is at least 0.7).

II. If the % nucleotide identity recalculated to the length of the whole

fragment is above 30% (number of matched nucleotides divided by the

fragment length is above 0.3). (

Note that the selected approach is one of the two possible interpretations.

The other would be dividing the length of the alingment by the fragment

length. This would be a slightly less strčit in case of a gapped alignment

(very common). Ultimately the authors educated opinion is that the 30%

cut off is very low as is and therefore is better to use the stricter method.

5. Every fragment that fulfils these two conditions will be used to calculate the

ANIb value by calculating the total mean of their identity percentages.

6. Repeat all of above only with the roles for A and B reversed.

7. Calculate the mean of the two resulting values to get the bi-directional ANIb

value for the examined sequence pair.

ANIb score corresponding to a DDH value of 70% and therefore to the boundary

for determining whether are the two examined prokaryotic organisms part of the same

species, has been set (based on extensive experimentation) between 94-96%. It has been

proven further that ANI score tightly correlates with DDH results for phylogenetic

34

purposes and therefore is a full-fledged alternative to DDH, while superseding it by

eliminating almost all of its drawbacks such as high cost, time required to perform the

experiment, man-hour demand and other uncontrollable factors that can potentially

influence results (Richter, 2009).

It is worth noting that another option for calculating ANI score is available based on

the MUMmer algorithm, that boasts a speed advantage over ANIb with only a very

slight decrease in accuracy when comparing organisms that appear to diverge at the

species level, (≈ANI score of 90% and lower).

ANIb is presently regarded as the new “gold standard” for prokaryotic species

definition and it is quickly becoming the most used parameter for taxonomic and

phylogenetic studies (Rosselló-Móra, 2015).

Tetranucleotide (oligonucleotide) frequency correlation]

Oligonucleotide frequency in each sequence is determined by the number of times a

unique oligonucleotide appears in the sequence. Unique oligonucleotide is defined as a

distinct nucleotide sequence of length k, where k=1 for mono nucleotide (single A, C, T

or G base), k=2 for dinucleotide (pairs like GC, TG, GT, AT etc.), k=3 for trinucleotide

(GCT, TGC, AAA, CGC…), k=4 for tetranucleotide (AGACT, TTGA,CGCT, AAAG..)

and k=n for n-nucleotide.

While the fact that oligonucleotides carry species-specific signal was

experimentally proven, suggesting that different species are biased towards under and

over representing different oligonucleotides and this profile is indeed species specific,

the reasoning behind this is still unknown. It has also been demonstrated that longer

oligonucleotides carry more of this signal than the shorter ones. Calculation of the

tetranucleotide frequencies and their correlation within examined dataset seems to

provide a good balance between performance cost and strength/reliability of the

phylogenetic signal. (Richter, 2009).

Tetranucleotide correlation coefficient between two DNA sequences is calculated

using method published by Teeling et al (Teeling, 2004), which itself is derived from

more universal method for calculating expected oligonucleotide frequency via Markov

models published by Schbath et al. (SCHBATH, 1995).

First step was to split the examined sequences to 40 kilobase (4000 bases) long

fragments designated as fosmids.

35

“In brief, all fragments were extended with their reverse complements. The

observed frequencies of all 256 possible tetranucleotides and their corresponding

expected frequencies were computed for these sequences. The differences between

observed and expected values were transformed into z-scores for each tetranucleotide.

The similarity between two fosmids was assessed by calculating the Pearson correlation

coefficient for their 256 tetranucleotide-derived z-scores.” (Teeling, 2004)

Expected tetranucleotide frequencies are computed by the maximal order Markov

model from dinucleotide and trinucleotide frequencies using the following formulas:

𝐸(𝑛1𝑛2𝑛3𝑛4) =
𝑂(𝑛1𝑛2𝑛3) × 𝑂(𝑛2𝑛3𝑛4)

𝑂(𝑛2𝑛3)

𝑍(𝑛1𝑛2𝑛3𝑛4) =
𝑂(𝑛1𝑛2𝑛3𝑛4) − 𝐸(𝑛1𝑛2𝑛3𝑛4)

𝑣𝑎𝑟(𝑂(𝑛1𝑛2𝑛3𝑛4))

𝑣𝑎𝑟 𝑂(𝑛1𝑛2𝑛3𝑛4) =

= 𝐸(𝑛1𝑛2𝑛3𝑛4) ×
[𝑂(𝑛2𝑛3) − 𝑂(𝑛1𝑛2𝑛3)] × [𝑂(𝑛2𝑛3) − 𝑂(𝑛2𝑛3𝑛4)]

𝑂(𝑛2𝑛3)

Where E signifies expected frequency of the given n-nucleotide, O stands for
observed frequency of the given n-nucleotide, var is the variance and Z is the z-score
used to represent the divergence between the expected and observed values. The n1 to
n4 stand for the particular bases in the tetranucleotide in question.

Determining whether two fosmids exhibit similar nucleotide over and under
representation patterns is realized via calculating the Pearson correlation coefficient for
the corresponding z-scores using this formula:

𝑝 , =
∑ 𝑋𝑌 − ∑ 𝑋 × ∑ 𝑌

∑ 𝑋 − (∑ 𝑋) × ∑ 𝑌 − (∑ 𝑌)

Where the X values are the z-scores of the 256 possible tetranucleotides computed
for the first fosmid and the Y values are the z-scores for the second one.

Resulting Pearson’s coefficient has been shown to greatly exceed simple GC

content calculation when it comes to determining species relatedness (Teeling, 2004).

Its values of >0.99 can quite reliably indicate ANI score of 95-96% or higher and by

extension species circumscription, however a considerable number of outliers has been

reported, where tetranucleotide correlation values suggest both significantly lower and

higher relatedness than ANI scores. Therefore, we can conclude that tetranucleotide

36

correlation score, while providing much higher accuracy for phylogenetic analysis than

simple %GC calculation, is still not as reliable as ANI score for the same purpose.

Nevertheless, since its performance cost is significantly lower than that of ANIb it can

be used for preliminary analysis of large datasets and due to its decent accuracy even as

an accompanying/control parameter for ANI-based phylogeny (Richter, 2009).

It is important to note that for the purposes of this program the TETRA value will

be counted without the artificial fosmid division. This is because, our application differs

from Teeling et al. in the fact that we are not interested in the intra-genome values, only

inter-genome ones. Furthermore, we will often end up using incomplete genomes,

unlike the exclusively whole genome sequences used in the referenced study. For these

reasons the division to 40kb fragments is not beneficial or useful for our purposes.

All of the above translates to the following step-by-step process used to determine

the pairwise TETRA values:

1. Load the two sequences – A and B and extend both by their complementary

strains.

2. Calculate the z-scores using the previously detailed formula for all 256

tetranucleotides in each sequence.

3. Calculate the Pearson correlation coefficient between the z-scores of A and B.

2.2.4 Need for an offline and user-friendly application

In previous paragraphs, we went through the most used (presently and in the past)

genomic parameters for phylogenetic analysis and classification of bacteria or even

prokaryotic organisms as a whole.

With this in mind, it is almost baffling that (to the best of the authors knowledge)

there is no offline solution that would facilitate the computation of these parameters

while implementing a user-friendly (or even any) graphical interface. The only

exception is the JSpecies (Jspecies, 2009) application, that implements a very polished

graphic UI. However, this software is ultimately let down by being outdated which

translates into not working properly with new versions of NCBI BLAST and suffering

from two major flaws: – an incorrect implementation of %GC content calculation and

the (probably being an unfixed bug) inability to process datasets bigger than 20

sequences (FASTA files), when comparing all possible pairs.

While there is a more than fair selection of command line applications and freely

available scripts that can be used, this requires basic or even advanced computer skills,

which still is not a given for many biologists. Another possible solution is again a rather

37

extensive selection of web-based applications, that while solving the problem of missing

graphical UI and ease of use come with a different issue – a dataset size limit typically

falling between 10-20 sequences per project. In the case of the improved and reworked

JSpeciesWS (JspeciesWS, 2015) web application, this limit is 15 sequences per project,

which is inconvenient for processing large sets of data. Another possible drawback is

that when the server in question is experiencing intense traffic, overload might occur

leading to much longer computation time than expected.

All of the above-mentioned leads to a clear conclusion – there are no solutions that

would satisfy all of the requirements.

Even if we consider only the three most important requirements:

1. ANIb calculation for unlimited datasets.

2. Offline functionality.

3. Usability for regular computer users.

The list of applications that would satisfy all three boxes requirements is still

empty.

.

38

3 Goals

The goal of this thesis is to design, implement, test, and release a bioinformatics

toolkit, the main functionality of which lies in comparing genomic parameters between

the nucleotide sequences of bacterial whole genomes.

This application is intended as a taxonomic tool, helping with classification and

taxonomy of bacteria. It can be used to compare large sets of genome sequences as well

as their selected subsets, all the while being simple to use and navigate which should

result in its practical usability even for inexperienced lab and research personnel.

Partial goals derived from the primary one are:

 To review theory and research behind selected in silico sequence-based

genomic parameters, their predecessors and alternatives as well as their in

vitro counterparts and predecessors to gauge their usability, advantages and

limitations.

 To gain deep understanding of mentioned algorithms and their inner

workings.

 Based on this review, to decide which parameters should be prioritised and

which (if any) should be omitted.

 To analyse the need for configurability to provide only relevant options

while avoiding unnecessary options.

 To design a project-based saving system that will ensure data preservation

and accessibility while enabling the program to recover from non-standard

termination without data corruption and loss of already computed results.

 To design application structure while taking speed and efficiency into

consideration, ideally using multiple processing threads.

 To design the application architecture that will fit outlined goals while being

compatible with personal computers based on x86 processor architecture and

running the Microsoft Windows operating system.

 To implement a solution based on the outlined design and its functional and

non-functional specifications.

 To document the implementation in a reasonable degree of detail (i.e. make

sure that the source code snippets are not the dominant part of this thesis’s

practical part).

 To create a simple user manual that explains the application functionality

from a practical standpoint.

39

4 Application design

4.1 Development process

The “Waterfall Software Development Cycle” was used as the application

development model. This cycle consists of following phases:

1. Requirement analysis.

2. Design.

3. Development.

4. Testing.

5. Maintenance.

For the purpose of this thesis and the application in question only first 4 phases will

be considered as the maintenance phase will take place after the publication and

throughout the application life cycle.

4.2 Requirement Analysis

4.2.1 Requirement specification

Requirements have been based on the feedback of researchers and lab workers from

the Laboratory of Bacterial Genetics (LBG) at the Czech National Health institute

(SZU) who will serve as testers and first users as well as consulted with the thesis

advisor.

Requirements have been split into two categories – functional and non-functional.

In the following two lists of specifications, only the main and most important

requirements are outlined. Even though there are many more less significant

requirements, listing all of them would serve as clutter making this thesis unnecessary

long and hampering readers orientation.

More notable challenges and requirements that made themselves apparent only

during the implementation process will be discussed in the corresponding chapter.

40

4.2.2 Functional specification

This section details the functional requirements of the application. In other words,

this is what the application will actually be “doing” (i.e. tasks that the program will

perform). This does not include architectural, environment or hardware specifications.

 Resulting system will come in the form of a single application that will

handle all of the programs functionality.

 The application will enable any user to:

o Set a workspace folder for future projects.

o Create a new or open an existing project.

o Delete a project.

o Import any number of sequence files in .fas, .fasta, .fsa or .txt format.

o Manage this file collection with the option to add and remove files.

o Set specific options for BLAST algorithms to influence ANIb

calculation.

o Set a path to the blastn executable file that needs to be present on the

host machine in order to calculate ANI based on the NCBI

implementation of the BLAST algorithm.

o Compute selected genomic parameters, depending on their nature

either for the single sequence (%GC) or as a pairwise comparison

(ANIb, TETRA).

o Reset (delete) computed results within the project.

o Export results in the form of a properly formatted .csv file.

o Exit the program.

 The application should be able to manage its folder and file structure in an

efficient way – i.e. not leaving any residual folders and files after the project

is deleted and erasing all the temporary files (this pertains mostly to chopped

query fragments during ANIb calculation) when the calculation is finished.

 The program should be able to cope with non-standard termination well, not

losing any results except for the last ANIb calculation that was in fragmented

state during termination – in this case temporary files will be deleted when

the calculation is initiated again.

 The program needs to be able to process virtually unlimited number of files

with the total number of pairwise comparisons realistically going into

thousands.

 If possible, the application should take advantage of multicore systems to

increase its speed.

 Visual interface should be simple and clearly labelled to make user

orientation easy.

41

The above-mentioned requirements are already application specific, however more

refinement is needed in several cases and some compromises will have to be made,

especially when it comes to multithreaded nature of the program.

When it comes to priorities the most important one is the ANIb calculation. Since

this is a parameter, that has become a golden standard in bacterial taxonomy it needs to

work reliably and consistently.

4.2.3 Technical specification

This section specifies things such as the environment in which the application

should run, hardware it should run on and software needed to run it. Technical or non-

functional specification is used to define the application properties rather than its

functions.

 Programming language of choice is C# using Microsoft .Net Framework,

with Microsoft Visual Studio as the integrated development environment

(IDE).

 Application will be developed as a Windows Presentation Foundation

(WPF) project and will use its respective libraries. While deciding between

using WPF and Windows Forms library, pros and cons of both were

considered and choice to use WPF was made due to its more modern feature

set and higher flexibility.

 The application should run under Microsoft Windows systems. While

compatibility with Windows Vista should theoretically not be a problem it is

not guaranteed, and it will not be tested. Compatibility is guaranteed with

Windows 7 from Service Pack 1 onwards and all versions of Windows 10.

 This application does not require an internet connection to run.

 In order to run the program Microsoft .NET Framework should be installed

in its latest version. This is however fixed by the system itself if needed.

 For the calculation of the ANIb genomic parameter, NCBI BLAST -

preferably in the latest version is required, more precisely having the blastn

executable file is sufficient.

 The application language is English.

42

4.2.4 Use cases

While the scope of this application is very focused and narrow, we will still go over

a few model use cases. This should enable further validation and/or reassessment of the

application functional specification.

Actors

Identifying actors (entities that interact with the program and use its functionality)

is rather simple since there is only one actor – any user.

There are no special privileges or user groups with varying degrees of control, so

any user has access to all of the applications functionality.

Use cases – project management

Actions used to create and manage a project perpetuated by the user include project

creation, opening an existing project, deleting a project, importing sequence files into

the project, adding files into the project, removing files from the project and changing

project specific and global settings (Figure 9).

 Create a project – User has an option to create and give a custom name to a

new project.

 Open an existing project – User has an option to open an existing

previously created project.

 Delete a project – User can delete any existing project by first opening it

and then selecting the delete option.

 Import sequence files – After opening or creating a project, user can

populate the project with sequence files whose names will be displayed

afterwards.

 Add sequence files – User can add sequence files to the project with the UI

updating accordingly.

 Remove sequence files from the project – User can remove sequence files

from the project with the UI updating accordingly.

 Change settings – User has an option to change global settings variables

such as workspace folder and path to the blastn executable file.

43

Use cases – calculation

User actions performed in order to calculate genomic parameters for a given set of

sequence files including selecting the parameter, selecting the pairs or individual files

from the project to include in the computation itself, computing the parameters,

exporting and viewing the results.

Figure 5 Uc Project management

Figure 6 Uc Calculation

44

 Select parameters and pairs to compute – User can select the parameter he

wants to calculate and pairs of sequences to be included in this calculation

from the list of all available sequences for pairwise comparisons or %GC

calculation.

 Compute – User then has an option to either confirm or cancel the selection

starting or cancelling the computation process.

 Export results – User has an option to export the results for the finished

calculations to a location of his choosing in .csv format.

 Viewing the results – User is free to select a software to view the exported

files based on his/her own preference since the output file format is common

and widely supported.

4.3 Design

4.3.1 Domain model

This model (Figure 11) illustrates the main project entity and its relations with other

objects from a domain perspective. It was modelled using the Universal Modelling

Language (UML) via the Visual Paradigm software.

4.3.2 Architecture

In terms of application architecture, the program design makes use of three layers:

1. Presentation layer – Handles graphical user interface, user interaction, form

validation etc. Interfaces with the application layer.

2. Domain or application layer – Handles the application logic such as

different algorithms and data processing. Interfaces with both the data layer

and the presentation layer.

3. Data layer – Stores application data. Interfaces with the application layer.

Figure 7 Domain model

45

In short, the presentation layer enables the user to make request, this results in

calling a function or method in the application layer which then accesses the necessary

data using the data layer and if applicable passes the result back to the presentation layer

resulting in a visual change.

An argument could be made that a domain layer should be differentiated and while

the distinction could be made perhaps in regard to the application layer being the one

including algorithms and methods, while the domain layer should govern the usage of

data layer methods for populating objects and variables. However, when it comes to this

project the author decided against making this distinction, since trying to distinguish the

two would only lead to confusion and would not serve any real purpose.

In the case of this application, no database in the traditional sense will be used;

instead the data are going to be stored in and loaded from a directory/file structure using

custom file types for configuration and project data and computational results. This

decision was made based on the fact that a separate database service is neither desirable

nor required and would likely introduce unnecessary performance issues.

Data layer

The data layer defines and creates the file structure and handle accessing and saving

the required data.

The UML diagram (Figure 12) shows the file structure end respective file content

that will be used in place of a traditional database.

Figure 8 Data layer

46

Application layer

This layer includes all of the algorithms and associated methods for computing the

genomic parameters as well as project management.

The following UML diagram depicts the example ANIb class.

Presentation layer

The presentation layer will use WPF controls implemented automatically by the

IDE in the xml language and databinding to construct the user interface. Function ‹calls›

and ‹variable changes› initiated from the UI will be handled via different Events (for

ex.: OnTextChange, OnClick, OnSelectionChange). Events in this context could be

described as a code block that is executed on the program detecting an interaction with

the user interfaces such as clicking a button, clicking a menu item, writing text into an

enabled text box or checking a check box or toggling a radio button.

4.3.2.1.1 UI design

The interface should be simple, concise and focused, enabling only methods and

settings that are relevant for the application functionality while keeping the visual flare

to a minimum.

After the application starts, the main interface window will be initialized with the

following layout:

At the top of the window, there will be a horizontal menu containing six items with

dropdown submenus. These will be:

I. File – Active at all times. Menu item enabling project control with options

to:

a. New project – Active at all times. Create a new project. Opens a

confirmation dialog with the possibility to choose the project name.

b. Open project – Active at all times. Open an existing project via

standard Windows Open File Dialog.

Figure 9 ANIb class

47

c. Delete project – Active only when a project is loaded. Delete the

currently loaded project. Opens a confirmation dialog.

d. Exit – Terminate the program. Opens a confirmation dialog.

II. Import – Active when a project is loaded. Import sequences:

a. From local files – Import a sequence file in any of the supported

formats from a local storage device. Realized via Windows Open

File Dialog with multiselect.

III. Compute – Active only when a project containing at least one sequence is

loaded. Menu item consisting of two submenus:

a. ANIb/TETRA – Active only when there are two or more sequence

imported into the loaded project. Allows the user to compute ANIb

and TETRA genomic parameters. Opens a list of all possible pairs

with checkboxes for both parameters and confirmation/cancel

buttons. Further options such as select all, select none and invert

selection are present. The two parameters are grouped together for

convenience since computing both for a given dataset is a common

practice.

b. GC content – Compute the %GC for selected sequences. Opens a

list with all the imported sequences and check boxes for each,

options to confirm/cancel are present. Same selection options as

above are supported.

IV. Results – Active only when a project is loaded and results for some or all

of the imported files are available. Menu item consisting of three submenus:

a. ANIb – Active only when ANIb results for one or more pairs are

available. Upon expanding three more options are available:

i. Full matrix – Export a full result matrix in the .csv format

to a local storage location specified by the user for the ANIb

algorithm with values for both alignment orientations (a as

query/target, b as target/query) if available.

ii. Averaged matrix – Active only when both alignment

orientations are computed for all of the present results.

Export a matrix in the .csv format to a local storage location

specified by the user with both alignment orientations

averaged to a single value – a standard output for practical

use of an ANI based comparison.

b. TETRA – Active only when TETRA results for one or more pairs

are available. Upon expanding two more options are available:

i. Matrix – Export a matrix in a .csv format to a local storage

location specified by the user containing tetranucleotide

48

frequency correlation coefficients between the computed

sequence pairs.

c. GC content – Active only when one or more results for %GC are

available. Export a matrix in .csv format to a local storage location

specified by the user containing %GC value, sequence length and

number of fragments (this will be >1 in case of multi FASTA files).

V. Tools – Active at all times. Expands into two more items:

a. Settings – Opens a new window allowing the user to set (note that

the last four settings will be active only when a project is loaded

since they are project specific):

i. Workspace folder either by inputting the path manually into

a text box control or by using a standard Windows dialogue.

ii. Blastn executable location folder either by inputting the

path manually into a text box control or by using a standard

Windows dialogue.

iii. Blastn algorithm type by a set of mutually exclusive radio

buttons.

iv. Mismatch penalty.

v. Match reward.

vi. Xdrop gap final parameter.

b. About

VI. Reset values – Active only when a there are is at least one result computed

for any of the parameters within the current project. Contains three sub

items that represent the corresponding parameters and are active only if the

appropriate results are available. This will delete all the results for a

selected genomic parameter in the given project. Confirmation prompt will

appear.

In the centre – filling the majority of the window real estate will be the file

list, this will contain the names of the loaded FASTA, .fas or .fsa files. On the

right side of the list area a delete button will be present, allowing the user to

remove any highlighted items from the project.

On the bottom there will be a status strip displaying messages about

performed tasks and computational progress.

49

4.3.3 Class structure

Classes in the project are organized in regard to the individual genomic parameters

– this spans three separate classes (ANIb, TETRA and GC).

The next separate class is the Project class, which facilitates project management

with relevant methods while housing global project variables. It also governs the file

structure and enables data access via its global variables for other classes and methods.

Finally, it houses the FASTA validation function.

To handle the settings saved in the registry and their default value, Global Settings

class is implemented.

Serving as main is the automatically generated Main Windows class. This serves as

an entry point for the application calling the needed methods on initialization. It also

holds all of the events triggered by interaction with the UI that are implemented mainly

in its MainWindow.xaml.cs counterpart.

Additionally, a few other classes are implemented for each of the additional

windows such as Settings Window, About window and pair/sequence selection

windows for computation.

While the Window classes serve mostly as the presentation layer, the distinction

between the application and data layer is less clear and there are overlaps between both.

Rules of the class interaction can be summarized like this: The Main Window class

and/or its sub-windows access all other classes – Project class, parameter classes, Global

Settings and UPGMA class. Parameter classes and the UPGMA class use Project

variables, structures and methods. The Project class accesses only the global settings

class.

Overall, the only reason this class structure has been chosen is that the author

considered it the most natural and organic way for him to design and implement the

application.

50

5 Implementation

The basic idea for the implementation is to build the fundamental blocks first.

In the first step, three class files were created – ANI.cs, GCC.cs and TETRA.cs.

These contain the elements outlined above.

This led to the next step. It was necessary to create project logic in Project.cs in

order to handle file structure, collections, saving and loading of project data and

computation results. Furthermore, a validation method had to be created in order to

determine whether the input files are in the correct FASTA format, count the fragments

and prepare the input string for the computation of the respective genomic parameter.

Next, the short Global Settings class was implemented.

The graphic interface in xml using WPF libraries and control logic was created.

This includes MainWindow and several other windows with various control elements

for project management, settings, computation and exporting results. This is the

connecting fabric for all the created modules.

Helping the author to learn the skill needed for this massive undertaking were

several books, hours of internet searching and going through different bioinformatics

and programming forums and obscene amounts of caffeine. (Compeau, 2015) (Nagel,

2009)

In the following paragraphs, the implementation is briefly described on a class-by-

class basis, while problematic and/or interesting parts of the solution are examined more

thoroughly including snippets of the actual code.

5.1 Classes

5.1.1 Project.cs

Variables

 Public static string folderFullPath – Full path to the projects folder.

 Public static string projectName – Just the name.

 Public static List<string> fastas – List of imported FASTA files.

 Public static List<string> ErrorLog – Error list for the current project and

current session, entire log is available in the form of a file.

51

Note: The static modifier for these variables is chosen because it is

highly undesirable for them to exist in more instances since we always work

with only one project at the time.

 Public static class ItemsToCompute – Contains extension classes

ItemsSelectedToCompute, ItemsToComputeGC and

ItemsToComputeANITETRA. These custom collection objects handle

various collections of sequences or sequence pairs.

Methods

5.1.1.1.1 Public static bool NewProject(string name)

This method handles creating the project and its folder and file structure. It also

loads the global settings from the registry, or their default values using the

GlobalSettings class and calls the SaveProject method.

5.1.1.1.2 Public static bool SaveProject()

This method saves the project data into the project master file (project_name.nsat).

These data comprise of the number of imported sequences and their full paths. It also

makes sure that at the time of saving, the sequence files exist and are accessible. In case

of errors, it deletes entries for the missing files and throws appropriate errors and

warnings.

5.1.1.1.3 Public static bool OpenProject(string path)

Opens an existing project by parsing the master file and checking availability of the

imported sequences. If a project is already loaded, it first saves it and then loads the new

one.

5.1.1.1.4 Public static bool ImporFastasFF(string [] names)

Gets file paths in an array from OpenFileDialog, checks their availability and then

validates them by using ValidateFile. It also calls SaveProject.

52

5.1.1.1.5 Public static bool ValidateFile(string path)

FASTA validation has to be implemented here since there are no fast and reliable

libraries available for C# that would handle this. Loading different file formats

according to the file extension is solved via the OpenFileDialog parameters.

While the above snippet might look convoluted and overly complicated for a simple

validation, it is justified. To illustrate we will break the method down:

 Full path of the FASTA file in question serves as the input; this file is read

line-by-line by the StreamReader. To get rid of accidental whitespaces

and/or tabs, we first trim the start.

public static bool ValidateFile(string path)
 {
 StreamReader reader = new StreamReader(path);
 string line = reader.ReadLine();
 line = line.TrimStart();
 for (int i = 0; i < 100; i++)
 {
 if (line == "") line = reader.ReadLine();
 else if (line.StartsWith(">"))
 {
 break;
 }
 }
 line = line.TrimStart();
 if (!line.StartsWith(">"))
 {
 return false;
 }
 line = reader.ReadLine();
 while (line != null)
 {
 line = line.TrimStart();
 if (line.StartsWith(">")) line = reader.ReadLine();
 else
 {
 line = line.ToLower();
 foreach (char i in line)
 {

 if (i == 'g' || i == 'c' || i == 's' || i == 't' || i == 'a'
|| i == 'w' || i == 'r' || i == 'y' || i == 'm' || i == 'k' || i == 'h' || i == 'b' ||
i == 'v' || i == 'd' || i == 'n' || i == '\r' || i == ' ' || i == '\t')
 {
 line = reader.ReadLine();
 }
 else return false;
 }

 }

 line = reader.ReadLine();
 }
 return true;
 }

53

 Then, we proceed to start searching for the header while being liberal and

allowing up to 99 empty lines at the start of the file. If we don’t find the

header on the 99th line, we consider the file invalid.

 After finding the header, we proceed to read the file line by line till the end

or until we encounter an invalid character in the sequence.

 We also take into account the possibility of a multi FASTA file by trimming

every line and checking its start for the header symbol before analysing it

character-by-character.

 We do not, however, allow for a header to be on the same line as a part of the

sequence, since this is no longer only formal format violation, but instead a

functional one, with potential to skew the results.

5.1.2 ANI.cs

Variables

This class houses no variables outside of its methods.

Methods

5.1.2.1.1 Public static int computeANIb

(List<Project.ItemsSelectedToCompute> pairsToCompute)

The name of this method is perhaps somewhat misleading, since it does not actually

compute the ANIb value; instead, it facilitates this by calling the ANI function which

does the actual computation and passing it the appropriate file paths.

It performs checks for file existence and if there is a problem, it will alter the item

list accordingly and throw appropriate warnings and errors.

It also performs (prior to the ANIb calls) multithreaded chopping of all sequence

files used in the computation to the 1020 base fragments using the ChopQuery() mehod

call.

The reasoning for the return value of this function being an integer is the fact that it

basically outputs error codes and the code calling this method then evaluates what kind

of error has been encountered. This is ultimately a question of granularity; the method

could have outputted a string, but in the authors opinion, this would be excessive and

unnecessary.

54

5.1.2.1.2 Private static void ChopQuery(string PathQ)

This method takes care of chopping the query into the 1020 base long chunks, while

not omitting the last fragment that is generally of shorter length.

The file is first read line-by-line to remove the headers, the resulting sequence is

then examined on per-character basis and spaces, tabs and newlines are removed

(counting on the fact that the file had to be validated earlier). Then a string builder is

used to build the resulting sequence, which should result in improved performance

compared to regular expressions. Finally, the chunks are created. This is handled by

accessing the string by index (in practice string is a char []). Each chunk is saved into

the project_name/temp/file_name/folder. FASTA header of each chunk consists of its

original header and the number of the chunk in question. Filename is then simply

chunk_no.fsa.

5.1.2.1.3 Private static bool ANIb(string PathA, string PathB)

This is the most important method in this class. It takes two sequences and

calculates the ANIb value for them.

private static bool ANIb(string PathA, string PathB)
 {
 if (File.Exists(PathA))
 {
 if (File.Exists(PathB))
 {
 int ChunkNo = 0;
 double ani = 0;//sum of alignment scores from all chunks
 string dir = Project.folderFullPath + "\\temp\\ani\\" +
Path.GetFileNameWithoutExtension(PathB);
 List<string> files=Directory.GetFiles(dir, "*.fsa",
SearchOption.TopDirectoryOnly).ToList();
 Parallel.ForEach(files, (file) => //multihtreaded blasting much
performance such wow
 {// Start the new process.
 Process p = new Process();
 // Redire ct the output stream from shell to SO
 p.StartInfo.UseShellExecute = false;
 p.StartInfo.RedirectStandardOutput = true;
 p.StartInfo.RedirectStandardError = true;
 p.StartInfo.CreateNoWindow = true;
 p.StartInfo.FileName = GlobalSettings.BlastnExecutablePath;
 p.StartInfo.Arguments =
 " -outfmt \"6 length qlen nident pident mismatch gapopen\" " +
//custom format separated by tab with only the results relevant for this use, not that
not all fields are currently used
 "-subject " + Path.GetFullPath(PathA) + " " +
 "-query " + Path.GetFullPath(file) + " " +
 "-penalty -1 "+
 "-gapopen 5 " +
 "-gapextend 2 " +
 "-xdrop_gap_final 150 " +//parameters specified in methodology
 "-evalue 1e-15 " + //denoise (expected coincidental matches)
"-max_target_seqs 1 "+ //we want just the top (best) alignment
 " " + "-dust no"; //remove regions of low complexity

55

There are several parts worth going over.

We can notice that a parallel for each loop is used - contents of this loop are equal

to blasting and processing the result of one fragment of the query sequence vs the

subject sequence. The shell execute is disabled and the output is redirected to the

StandardOutput, which we can parse. Blastn path is fetched and start arguments are

specified. These include specifying the custom format of the blast output format 6. In

this, we specify the fields we are interested in. Note that some of the values are not

currently used, however they are relevant for planned graphical representation of the

alignments. Resulting output are desired values separated by tabs, which is a simple and

easy to parse format.We then read the output using StreamReader, wait for the process

to exit and examine the exit code.

Here we first examine the code with which the blastn process ends. Anything else

than a 0 is an error.

if (p.ExitCode != 0) //exit code !=0 is a BLAST error
 {
 string error = "\"" + p.StartInfo.FileName + "\" " +
p.StartInfo.Arguments + "\n" + p.StandardError.ReadToEnd();
 MainWindow.main.Status = error;
 Project.ErrorLog.Add(error);

 }

 else
 {//parse output

 string[] cells = output.Split('\t');
 if (cells.Length == 6)
 {
 double TotalIdentity = 0;
 double coverage = 0;
 double AlignLength;
 double matched;
 AlignLength = Double.Parse(cells[0]);
 matched = Double.Parse(cells[2]);
 double FragLentgth;
 FragLentgth = Double.Parse(cells[1]);
 if (AlignLength >= 1020) coverage = 1;
 else coverage = AlignLength / FragLentgth;
 if (coverage >= 0.700000)
 {
 TotalIdentity =
((matched/FragLentgth)*coverage);
 if (TotalIdentity > 0.300000)
 {

 InterlockedAddDouble(ref ani,
TotalIdentity);
 Interlocked.Increment(ref ChunkNo);
 }

56

In case of successful calculation (exit code==0), we will analyze the output. Here

we parse the cells from the output and if the requirements outlined in the ANI chapter

are met we will use it for the ANIb value calculation.

What is interesting from a programmer standpoint here is the Interlocking and

thread safety consideration. We need to change two variables outside of the parallel

loop. ChunkNo can be incremented by the already implemented Interlocked.Increment

method. The ani variable which sums all the identity values is trickier. There is the

Interlocked.Add method; however, this only works for integers. This led the author to

implement a custom method.

InterlockedAddDouble(ref double refLocation, double add)

The main purpose of this method is to allow change to the referenced value only

when it hasn’t been changed during the process of addition. This is realized by the

while(true) infinite loop and the Interclocked.CompareExchange, that exchanges the

value only when the reference did not change and the escape from the loop is solved by

the if condition and the break command.

5.1.2.1.4 Public static bool GenerateCSVAni(string file)

This and the public static bool GenerateCSVAniAvg(string file) methods are

used to generate the csv result matrices. These methods use typical nested foreach loops

with alterations to present either bi-directional or averaged ANIb values.

5.1.3 GCC.CS

Variables

No global variables are present in this class.

private static void InterlockedAddDouble(ref double refLocation, double add)
 {//custom method for thread safe double addition
 double startVal = refLocation;

 while(true)
 {
 double current = startVal;
 double newVal = startVal + add;
 startVal = Interlocked.CompareExchange(ref refLocation, newVal,
current);
 if (startVal == current) break;
 }

 }

57

Methods

5.1.3.1.1 Public static bool computeGCcontent(string path)

Using a simple foreach cycle with if conditions for different characters, this method

calculates overall sequence length, number of fragments (by summing up the number of

lines starting with the header character “>”, number of individual A, T, G and C bases,

number of N bases, number of other ambiguity symbols and the %GC content.

Most notable here is that unlike the JSpecies and JSpeciesWS the %GC calculation

is implemented correctly therefore only decidedly G or C and decidedly A or T bases

are considered.

5.1.3.1.2 Public static bool generateCSVGc(string file)

The method used for generating the result matrix, standard foreach cycle taking all

the files in the result folder and presenting the contained information in the csv format.

5.1.4 TETRA.cs

This class was implemented last, with the old implementation being completely

scrapped in favor of the new and improved one. This is a good example of clean and

efficient programming, unlike some other parts of this project. Multithreading is

handled optimally here and overall there is little to improve further.

Variables

No global variables in the TETRA class.

Methods

5.1.4.1.1 Private static Dictionary<string,double> computeZscores(string

path)

This method takes the path of a sequence file, loads it and computes z scores for

every one of the 256 tetranucleotides using the maximum order Markov model.

Detailed breakdown with source code bellow:

58

The first part of the code disregards the header lines, then all the ambiguous bases,

since those cannot be used to calculate tetranucleotide frequencies. StringBuilder is used

for performance reasons. Also, by using two, we can construct the complementary

strand at the same time. All we have to do then is reverse the complementary strand and

concatenate the two strings. The char array method used for the reversal should provide

the best performance.

private static Dictionary<string, double> computeZscores(string path)
 {
 //first load the sequence, remove the headers and keep only G,C,A and T
bases while concatenaning with the reverse complement
 try
 {
 StringBuilder sb = new StringBuilder();
 StringBuilder sbC = new StringBuilder();
 StreamReader reader = new StreamReader(path);
 string line = reader.ReadLine();
 while (!String.IsNullOrEmpty(line))
 {
 if (!line.StartsWith(">"))
 {
 line = line.ToUpper();
 foreach (char c in line)
 {
 if (c == 'A')
 {
 sbC.Append('T');
 sb.Append('A');
 }
 else if (c == 'T')
 {
 sbC.Append('A');
 sb.Append('T');
 }
 else if (c == 'G')
 {
 sbC.Append('C');
 sb.Append('G');
 }
 else if (c == 'C')
 {
 sbC.Append('G');
 sb.Append('C');
 }
 }
 }
 line = reader.ReadLine();
 }
 string compl = sbC.ToString();
 char[] array = new char[compl.Length];
 int forward = 0;
 for (int i = compl.Length - 1; i >= 0; i--)
 {
 array[forward++] = compl[i];
 }
 compl = new string(array);
 string seq = sb.ToString() + compl;

59

Next, it was necessary to create dictionaries for observed and expected

tetranucleotide frequencies and derived z-scores along with the observed di/tri

nucleotide frequencies. These are keyed by a string of the oligonucleotide itself and

double datatype stores the frequency value. Filling for the keys was handled via nested

foreach cycles providing variations with repetitions from A, C, G and T characters.

char[] n4 = { 'A', 'C', 'G', 'T' };
 char[] tetra = new char[4];
 Dictionary<string, double> observed4 = new Dictionary<string,
double>(); //fill the list with all 256 tetranucleotide combinations as keys
 Dictionary<string, double> expected4 = new Dictionary<string,
double>();
 Dictionary<string, double> zscores = new Dictionary<string, double>();
 foreach (char n1 in n4)
 {
 tetra[0] = n1;

 foreach (char ntwo in n4)
 {
 tetra[1] = ntwo;
 foreach (char nthree in n4)
 {
 tetra[2] = nthree;
 foreach (char nfour in n4)
 {
 tetra[3] = nfour;
 observed4.Add(new string(tetra), 0.0);
 expected4.Add(new string(tetra), 0.0);
 zscores.Add(new string(tetra), 0.0);
 }
 }
 }

 }
 char[] n3 = { 'A', 'C', 'G', 'T' };
 char[] tri = new char[3];
 Dictionary<string, double> expected3 = new Dictionary<string,
double>();
 Dictionary<string, double> observed3 = new Dictionary<string,
double>();
 //fill the list with all trinucleotide combinations as keys
 foreach (char n1 in n3)
 {
 tri[0] = n1;
 foreach (char ntwo in n3)
 {
 tri[1] = ntwo;

 foreach (char nthree in n3)
 {
 tri[2] = nthree;
 observed3.Add(new string(tri), 0.0);
 expected3.Add(new string(tri), 0.0);

 }

 }

 }
 char[] n2 = { 'A', 'C', 'G', 'T' };
 char[] di = new char[2];
 Dictionary<string, double> observed2 = new Dictionary<string,
double>(); //fill the list with all dinucleotide combinations as keys
 Dictionary<string, double> expected2 = new Dictionary<string,
double>();

60

Filling the values for observed frequencies is facilitated by a for cycle accessing

four, three and two-character long substrings from the sequence analyzed. Next, the

expected frequencies and later, the derived z-scores are computed based on the formulas

detailed in the theoretical portion of this thesis.

The method returns a dictionary of z-scores keyed by the corresponding

tetranucleotides for the given sequence.

 foreach (char n1 in n2)
 {
 di[0] = n1;
 foreach (char ntwo in n2)
 {
 di[1] = ntwo;
 observed2.Add(new string(di), 0.0);
 expected2.Add(new string(di), 0.0);

 }

 }
 int length = seq.Length;
 for (int i = 0; i < length - 3; i++)
 {//tetranucleotide observed frenquencies
 observed4[seq.Substring(i, 4)] += 1;
 }
 for (int i = 0; i < length - 2; i++)
 {//trinucleotide observed frenquencies
 observed3[seq.Substring(i, 3)] += 1;
 }
 for (int i = 0; i < length - 1; i++)
 {//dinucleotide observed frenquencies
 observed2[seq.Substring(i, 2)] += 1;
 }
}
 foreach (string tet in observed4.Keys)
 {//Fill the expected tetranucleotide frenquencies
 expected4[tet] = (observed3[tet.Substring(0, 3)] * obser-
ved3[tet.Substring(1, 3)]) / observed2[tet.Substring(1, 2)];
 }

 foreach (string tet in observed4.Keys)
 {//compute zscores for each tetranucleotide
 zscores[tet] =(observed4[tet]- expected4[tet])/ (expected4[tet] *
((observed2[tet.Substring(1, 2)] - observed3[tet.Substring(0, 3)]) * (obser-
ved2[tet.Substring(1, 2)] - observed3[tet.Substring(1, 3)]))) / (observed2[tet.Sub-
string(1, 2)] * observed2[tet.Substring(1, 2)]);
 } return zscores;
 }
 catch
 {
 return null;
 }

61

5.1.4.1.2 Pirvate static double ComputePearsons(Dictionary<string, double>

zscoresA, Dictionary<string, double> zscoresB)

This is a relatively simple method that takes two z-score dictionaries for the two

sequences that are being compared and using foreach loop computes the Pearson`s

correlation coefficient in this context referred to as Tetranucleotide frequency

correlation coefficient.

5.1.4.1.3 Public static bool

computeTetra(List<Project.ItemsSelectedToCompute> FastaPairs)

This method takes a custom collection implemented in the Project class as the input

argument. This is a collection of unique pairs selected by the user in the UI, unlike the

collection passed to ANIb methods, it is not bi-directional (instead of A-B and B-A

pairs there is only one of the two).

 public static bool computeTetra(List<Project.ItemsSelectedToCompute> FastaPairs)
 {//Compute Tetra score(Pearsons cc of z scores from seq a and seq b) using
implemented functions
 //The way we store information is a dictionary with a given fastas filename
as a key and dictionary of its zscores as a value
 try
 {

 List<string> uniqueFiles = new List<string>();

 foreach (var pair in FastaPairs)
 {

 if (!uniqueFiles.Contains(pair.FullPath))
uniqueFiles.Add(pair.FullPath);
 if (!uniqueFiles.Contains(pair.FullPathB))
uniqueFiles.Add(pair.FullPathB);

 }
 ConcurrentDictionary<string, Dictionary<string, double>> Zscores = new
ConcurrentDictionary<string, Dictionary<string, double>>();
 Parallel.ForEach(uniqueFiles, (file) =>
 {
 Zscores.TryAdd(file, computeZscores(file));

 });

 Parallel.ForEach(FastaPairs, (pair) =>
 {
 double tetra = ComputePearsons(Zscores[pair.FullPath],
Zscores[pair.FullPathB]);
 if (!File.Exists(Project.folderFullPath + "\\TETRA\\" +
Path.GetFileNameWithoutExtension(pair.FullPath) + "_vs_" +
Path.GetFileNameWithoutExtension(pair.FullPathB) + ".tet"))
 {
 File.WriteAllText(Project.folderFullPath + "\\TETRA\\" +
Path.GetFileNameWithoutExtension(pair.FullPath) + "_vs_" +
Path.GetFileNameWithoutExtension(pair.FullPathB) + ".tet", tetra.ToString("F6"));
 }
 });
 return true;
 }
 catch { return false; }
 }

62

It is good to note the use of multithreading in this method; first, using a

ConcurrentDictionary to store the z-scores so they can be computed in parallel for

unique sequences and access to the storing structure remains thread safe. Second, for

correlation coefficient calculation.

5.1.5 GlobalSettings.cs

Variables

Public static string WorkspaceFolder

Public static string BlastnExecutablePath

Self-explanatory.

Methods

5.1.5.1.1 Public static bool LoadGlobals()

Loads the two path values from the corresponding registry entries. In case there are

no values saved in the registry it saves the default ones.

Enviroment.SpecialFolder.MyDocuments is used for stability.

5.1.5.1.2 Public static bool SaveGlobals()

 Saves the current values to the registry.

5.1.6 MainWindow.xaml.cs

Variables

Internal static MainWindow main – Enables access to MainWindow controls

from different classes if needed.

63

Internal string status – Using data binding, the status variable is bound to the

contents of the ListBox lbStatus which is a control in the MainWindow showing the

current status of the program.

Methods

5.1.6.1.1 Enable/disable methods

These methods simply enable and disable different sets of controls. They are called

from different methods at different times. The main idea is for the user not to be able to

access controls that would not work at the time anyway. For example, trying to import

files while no project is loaded, or trying to compute ANIb values without having

sequences (or just one) imported.

5.1.6.1.2 Public MainWindow()

The entry point. It initializes the application components, loads global settings, sets

up the databinding on status and makes sure all controls, except Project->Open, Project-

>Close and Tools->Settings are disabled.

5.1.6.1.3 Control click methods

The rest of this class is comprised of the click methods handled through

RoutedEvent arguments. These methods are called when the user clicks the

corresponding control. They ensure that proper functions with proper inputs are called;

they also take care of enabling/disabling the controls by calling the associated methods

and output appropriate status, warning and error messages. Examining them any closer

is not needed.

5.1.7 SelectionWindow.cs and GCSelectionWindow.cs

These two classes are owned by the main. They serve as controls for pair/sequence

selection for the implemented calculations.

They make use of the custom collections implemented in the Project class. Another

worthwhile mention goes to the use of databinding to generate dynamic controls from

the bound collection.

64

SelectionWindow controls the ANIb and TETRA calculation, since these two

parameters are usually computed together. However, there is of course an option to

select one or the other or both for each pair using the appropriate checkboxes.

GCSelectionWindow controls the %GC content calculation along with other

sequence parameters such as length, number of each base type, number of fragments,

number of unknown bases and number of ambiguous bases. It is handled in a similar

fashion to the SelcetionWindow.

5.1.8 Other windows

While the about window was simply not yet implemented, since it would serve no

practical purpose, the SettingsWindow class is very simple, serving to pass and verify

the path variables between the program and the user. This is handled by calling the

GlobalSettings class.

65

6 User manual

This manual aims to familiarize the user with the programs functionality and its

GUI. It explains how to perform all of the supported actions.

6.1 Program installation

Initiate the installation by navigating to the NSAT_install folder on the included optical

disk. Alternatively it is possible to compile the source code from the folder

NSAT_source on the same disk. It is however recommended to use the first option,

since the application will check for updates that can improve its functionality and make

the user experience more pleasant. After the installation is complete, the program will

launch automatically. In case your computer does not have Microsoft .NET Framework

installed, it should automatically prompt you to download and install it. However, an

installation file is included in the NSAT_install folder.

6.2 BLAST+ installation

Installation file for the latest version of BLAST+ is included on the optical drive

inside the NSAT_install folder. It can also be downloaded from:

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

The NSAT application was tested using BLAST+ in the 2.7.1 stable version, so it is

highly recommended to download this exact version.

The installation wizard should lead you through the setup process with no

problems; however, make sure to make a note of the installation folder used.

6.3 Step-by-step user guide

The following guide familiarizes you with all the available functions and options

supported by the NSAT application. This guide assumes you managed to compile or

install the program and it is currently running.

1. On the first launch, the program should notify you that the path to blastn.exe

is not set. Confirm this dialog.

2. Next, locate the horizontal menu bar at the top of the window and hover

your cursor over the Tools menu item.

66

3. A drop down menu will appear, from that hover over the Settings option

and click on it.

4. The Settings window will appear on top of the NSAT window. Here you

need to set the path to the blastn.exe file for the ANIb calculation to

function. You will find this file in the bin folder inside you NCBI BLAST+

installation directory.

5. To input the path, you can either use the text box adjacent to the „BLASTn

executable location“ label, or by pressing the … (three dots) button next to

the aforementioned text box and navigating to the file using Windows

explorer.

6. You can also change the workspace location here; however, it is

recommended to keep it as is. The default location for the workspace folder

is //DOCUMENTS//NSAT.

7. Next, you should create your first project.

8. Select the File menu item and in the dropdown menu, click on New Project.

Figure 11 NSAT File menu

Figure 10 NSAT Settings

67

9. The New Project window will appear. In the text box Project name, fill in

the desired name for your project. If you input name of an existing project,

the project creation will fail and you will be notified by an error message in

the status bar at the bottom of the NSAT window.

10. You can also open an existing project in this state by clicking on Open

project in the File submenu.

11. After the project is successfully created or opened, you should be notified in

the status bar. Note that if you are loading an existing project, all the

previously imported files will be loaded with, if they are still accessible.

This also means they will be validated again, which can take a couple

seconds.

Once a project is loaded you, can also choose to delete it. This is done by

selecting the Delete project option from the File menu. This will delete the

projects folder and all of its contents, which means all of the computed

results for this project will be deleted unless you saved a result matrix

outside of the project folder. You will be asked to confirm your choice

before the project is irreversibly removed.

12. Now you are free to import sequence files to your project. Select the Import

menu item and Fastas from files from the submenu. You can now load

.fasta, .fsa, .fas or even .txt files (Note that they need to have a proper fasta

header and a nucleotide sequence as the content). Multiselect is enabled,

which means you can select multiple files and load them at once.

If you wish to remove some of the files from your project, you can do so by

selecting them in the list box inside the NSAT window where they are

shown. Single selection is realized by clicking on the item, while multiple

selection can be achieved by either holding down the control key and

clicking or by holding down the shift key and click-dragging your cursor

over the items.

Figure 12 NSAT New project

68

File validation can take a few seconds depending on the number of

sequences being loaded, computer speed and sequence length. After this is

done, you are free to select and calculate the desired parameters.

13. Select the Parameters menu item; in its submenu, select Compute and

from its list choose either ANIb\TETRA or GC Content depending on

which parameter you want to compute.

14. After you make yout choice, a computational window will open. In case of

the ANIb/TETRA parameters, it will contain all the possible unique pairs

(variations without repetition) created from the imported sequences and

check boxes for both of the parameters for each pair. In case of the GC

content, it will contain all of the unique sequences each with a single check

box.

15. Make your selection of pairs/sequences and desired parameters by checking

the appropriate check boxes. The Select all, Select none and Invert

selection controls available in both windows can help you when it comes to

bigger datasets.

Figure 13 NSAT loaded project

69

16. The computation is initiated by clicking the Compute button. Caution:

While the TETRA and %GC parameter calculations are extremely fast and

will take only seconds (TETRA takes slightly longer than %GC), the ANIb

calculation takes minutes to hours in larger datasets. It is recommended to

use only a few sequences for testing purposes in case of this parameter.

17. When the computation is finished, you will be notified by the program.

18. You can now export the results in .csv format by selecting Parameters-

>Export CSV and the appropriate parameter the export options will be

active only for the parameters that have been computed for at least one

sequence or pair, respectively.

In case of ANIb, you can pick either full or average matrix. The full matrix

resents the bi-directional values for the parameter, however, this is rarely

Figure 14 NSAT computation

70

used for testing purposes. It is better to pick the matrix with averaged

pairwise distances.

19. The last option provided is the Reset results option. By selecting this item,

you can choose a parameter for which you want to delete previously

computed results by clicking on it in the sub menu.

20. You can exit the application either by clicking the X in the top right hand

corner of the NSAT window or by navigation to the File menu and selecting

the Exit option.

21. You do not have to worry about saving your progress. It is done

automatically anytime you change a setting, add a sequence file or another

result (for a single pair or sequence) is computed.

22. Finally, even by terminating the program in non standard way such as

killing the process or shutting down your computer will not cause any

problems. You will only lose partially computed results..

71

7 Results and testing

7.1 Testing

Two separate testing methods (Unit and User testing) have been used.

7.1.1 Unit testing

For data and domain layer testing, unit tests have been created where possible using

Microsoft Visual Studio and testing mostly the implemented algorithms with the overall

data handling.

<unit test example snipper>

7.1.2 User testing

UI and application testing

For the purposes of presentation layer testing and overall application testing, user

tests have been conducted ensuring that the resulting program works as intended.

This was realized by testing all the functions of this program on two separate

machines – one running Windows 10 and the other running Windows 7 with both

systems having the latest updates installed and using the latest version of NCBI BLAST

at the time (version 2.7.1 stable) for ANIb calculation. Multiple tests have been

conducted in order to test all of the functionality and different combinations and

succession of user actions. Features tested were:

 Launching and quitting the program.

 Creating a new project with a custom name.

 Opening an existing project – not containing any files, containing files, with

no results computed, with some results computed, with all results computed.

 Importing files to the project.

 Removing files from the project.

 Changing the workspace folder.

 Changing the blastn executable location.

 Changing the blastn command line application parameters and the effect on

ANIb results.

 Forcefully terminating the program while computation is in progress and

recovering results.

 Exporting and viewing result files.

 Programs ability to deal with invalid sequence files.

72

Results accuracy testing

Testing accuracy of the achieved computational results is crucial to ensure that the

algorithms have been implemented properly.

Testing sequences were selected as a part of a bigger sequence set used for an

article co-authored by the author of this thesis. The article in question deals with

taxonomic revision of the Acinetobacter lwoffii group. While the article has been

already submitted it is now in pre-print and pending review status.

The article in question is titled “Revising the taxonomy of the Acinetobacter lwoffii

group: the description of Acinetobacter pseudolwoffii sp. nov. and emended description

of Acinetobacter lwoffii” and its pre-print version can be found on the attached compact

disc. The article was submitted to the journal “Systematic and Applied Microbiology”.

All testing for ANIb and TETRA parameters was done on the same set of sequence

files. For %GC testing a different, more suitable set of sequences was used and %GC

values from the NCBI nucleotide database served as control (since this metric is

calculated improperly in both JSPecies and JSpeciesWS).

The tables with actual results used for this testing are attached on the optical disc in

the \\Attachements\\Validation\\ folder, since it is pretty much impossible to make

them a part of this printed docuent in any satisfactory manner.

73

8 Discussion

As can be seen from the testing and results section, the application is functional for

its purpose, while providing accurate results. There are however some caveats and other

things worth noting when it comes to the individual genomic parameters and their

results.

8.1 User testing

While the results of user testing are mostly positive, there can still be stability

issues in cases of highly non-standard user behaviour.

8.2 Result analysis

8.2.1 ANIb results analysis

We can notice a slight deviation from JSpecies and JSpeciesWS controls in ANIb

results. However, this variation can be attributed to a different and newer version of the

BLAST algorithm and its heuristic nature. This is supported by the fact that the ANb

values obtained by JSpecies and JSpeciesWS deviate from each other as well.

Nevertheless, all these deviations are small (<0.1%) and occur only for low ANIb

values, thus being insignificant for the purposes of this application.

That being said, further investigation is required and has been initiated by the

author in a form of an inquiry to dr. Ramon Rosselló-Móra, the senior author of the

JSpecies and JSpeciesWS applications. The reason for this inquiry was the fact the

blastn parameters specified in the JSpeciesWS documentation are functional only for the

older BLAST algorithm, while JSpeciesWS and our new application uses the new and

improved BLAST+. Although, it is possible to “translate” all of the parameters used into

their equivalents for the BLAST+, the issue comes with the required parameter

“penalty” of -1. Specifying this parameter causes BLAST+ to throw an error forcing the

user to specify two more parameters, “gap open penalty” and “gap extension penalty”,

in a specific range. Because these parameters are not specified in the methodology, it is

possible that the two mentioned parameters are the source of the inconsistencies. In the

current state those are set to 5 and 2 respectively, mirroring the legacy BLAST default

values. The creators of the JSpeciesWS software therefore had to specify these

parameters, assuming that they indeed used the penalty of -1, which would lead to

74

results that more closely mirror those obtained with the previously used software. To

verify this assumption, ANIb was calculated using the legacy BLAST algorithm and no

difference outside the margin of error was found between these values and the values

calculated by the original JSpecies. However, using the legacy BLAST version is not

recommended as it is inferior in many ways, including performance, to the newer

BLAST+, while also being no longer supported. Therefore, our program will continue to

use the BLAST+.

8.2.2 %GC results analysis

When it comes to the %GC results, we can see that our results deviate from those

produced by both JSpecies and JSpeciesWS in some cases, which should not happen

since this is an exact metric, not a heuristic estimation. In this case, the controls are to

blame. When checked against the NCBI nucleotide database, the results from both

control applications differ at times, while our results are always on point. This indicates

that the implementation of this genomic parameter in the two control programs is

incorrect and confirms the observation of others that JSpecies does not work properly.

It is likely that the faulty calculation of %GC by JSpeciesWS is caused by improper

handling of the many ambiguity symbols that can appear in a FASTA file. Proper

implementation should only take into an account G, C , A, T, S and W. What most

likely happens (inferred from the fact that when deviating, %GC scores yielded by

JSpeciesWS are slightly lower than controls) that the overall sum of decidedly G or C

bases in the whole sequence is probably calculated correctly, but as a next step instead

of dividing by the sum of decidedly G or C plus the sum of decidedly A or T the G or C

sum is divided by sequence length. This then also takes into account all of the other

ambiguity symbols such as N or K that do not hold enough information to be decidedly

members of either of the pairs and should therefore not be used in the calculation at all.

The deviations found for %GC values calculated by JSpecies are too high to be

explainable as above and it is possible that this software suffers from another systematic

error

8.2.3 TETRA results analysis

Tetranucleotide correlation coefficient results are satisfactory, being identical with

the controls. Furthermore, the implementation has been shown to be extremely fast,

handily outperforming the original JSpecies program, while in case of the JSpeciesWS

such comparison cannot be made since it runes on a remote server.

75

8.3 Future goals

It is clear from the result analysis, that there is still work to be done on this

application.

Firstly, it would be ideal to achieve ANIb results within the margin of error of the

JSpeciesWS results, but this depends on the methodology clarification being expected

from dr. Ramon Rossello-Mora and his colleagues.

Furthermore, the stability of the program should be tested further, even though it

does not currently exhibit any issues in this area.

Another consideration includes a computational speed improvement. In its current

state, our application is not making the best use of the modern multithreaded systems for

the ANIb calculation. The JSpecies control is often somewhat faster when computing

the ANIb parameter - therefore optimizations could definitely be made. Some possible

improvements are quite obvious, the biggest bottleneck at the present time seems to be

the I/O (storage) performance, this could potentially be alleviated by either using

BLAST+ to create a custom database or storing the fragments in a data structure. The

author decided against the first option because it adds the need to build the database

from all of the fragments for each sequence first, which is not exactly computationally

light. The argument against the second possible solution was a fear of oversaturating the

memory subsysten on older or less powerful PCs, in retrospect this argument is

somewhat flawed and not a real concern outside of very large datasets. Overall,

performance optimization for ANIb is one of the most important future goals that will

require a considerable time investment and experimentation. Of course, the author`s

lack of coding experience somewhat contributes to this problem, so it can be expected

that the application will improve with the author's abilities and experience.

Next in line would be improving the graphical user interface. While the presently

used is definitely serviceable, it leaves more to be desired from a practical standpoint

such as:

 Improving the selection management.

 Adding support for keyboard shortcuts.

 Adding the possibility to view results in the GUI itself without any need for

third party applications.

Improving the GUI from an aestethic persepctive is extremely low on the list of

priotities, since it would not serve any practical purpose.

From the functional perspective, there are some other genomic parameters worth

exploring and possibly adding such as oligonucleotide correlation (five and six),

76

Average Amino Acid Identity (AAI) (Konstantinidis, 2005b) and the Microbial Species

Identifier (MiSI) (Varghese, 2015).

8.4 Practical usability

With the above-mentioned limitations in mind, the resulting application is a usable

tool for in silico sequence-based DNA comparison. As such, it will be deployed in the

following weeks as a main sequence comparison tool in the Laboratory of Bacterial

Generics at the National Health Institute and used for planned extensive taxonomical

studies.

77

9 Conclusion

Overall, all the goals of this thesis have been fulfilled with some minor caveats and

a few compromises as summarized below and analyzed in the “Discussion” chapter. The

best way to gauge success or lack thereof when it comes to this thesis is to recap the

goals outlined in the “Goals” chapter and try to evaluate if and into what extent have

they been fulfilled.

9.1 Goal fulfillment evaluation analysis

 To review theory and research behind selected in silico sequence based

genomic parameters, their predecessors and alternatives as well as their in

vitro counterparts and predecessors to gauge their usability, advantages and

limitations.

 Many papers and articles relevant to the study subject have been

perused, although not all of them are cited. The most relevant articles

are listed in the “Literature” section.

 To gain deep understanding of mentioned algorithms and their inner

workings.

 The author managed to gain deep understanding of the methods

involved and the theory behind them. The most relevant methods and

algorithms are described in the “Current state” chapter.

 Based on this review, to decide which parameters should be prioritised and

which (if any) should be omitted.

 The most important parameter is ANIb as it is widely regarded as a

taxonomic gold standard.

%GC is considered as having the second priority. While it is a

very simple measurement, it is widely used and takes virtually no

computational time.

TETRA has shown some potential, while it is not as widely

adopted as the previous ones and when it comes to conclusiveness of

its results it lies somewhere between the two, it has proven to work

extremely fast, in practical terms its speed is very close to that of the

%GC. This parameter was included mainly because it has a potential

to determine whether or not ANIb should be calculated.

 To analyse the need for configurability to provide only relevant options

while avoiding unnecessary options and confusing the user.

 All of the algorithms are rigidly defined. Therefore, providing any

configuration options that would affect results to the user would be

78

counterproductive. The initial idea to offer some of the BLAST+

command line parameters as configurable was implemented but later

scrapped since it ultimately made little to no sense. It is not among

the goals for this application to serve as a BLAST+ GUI. So in the

end, only configuration options present in the program are related to

paths to the blastn executable and option to change the workspace

folder location.

 To design a project-based saving system that will ensure data are

preservation and accessibility while enabling the program to recover from

non-standard termination without data corruption and loss of already

computed results.

 The way this application works pretty much ensures that the second

an option is changed, or a result is computed it saves it into a file (or

a registry key) which is simple but effective. The only data that are

lost are the partial calculations if the program exited in a non-

standard manner during the process.

 To design the application structure while taking speed and efficiency into

consideration, ideally using multiple processing threads.

 This is a partial success. While performance was always considered

when writing the code and multithreading was implemented where

possible, there are definitely improvements to be made. Especially

when it comes to the ANIb parameter.

 To design the application architecture that will fit outlined goals while being

compatible with personal computers based on x86 processor architecture and

running the Microsoft Windows operating system.

 The application runs well under Microsoft Windows on standard

personal computers.

 To implement the solution based on the outlined design and its functional

and non-functional specifications.

 The implementation fulfils the vast majority of the specified

requirements.

 To document the implementation in a reasonable degree of detail (i.e. make

sure that the source code snippets are not the dominant part of this thesis’s

practical part).

 This has been done in the “Implementation” chapter of this thesis.

 To create a simple user manual that explains the application functionality

from a practical standpoint.

 This has been done in the “User manual” chapter.

79

9.1.1 The missing dendrogram

While it might have not been noticed sadly the function to export a dendrogram is

currently missing from the program. While UPGMA clustering and Newick format

export have been implemented, unfortunately the author did no test the implementation

thoroughly until the day before deadline when it became clear that it is not functioning

properly, the problem lies either in the implementation of the clustering algorithm or in

building the Newick file. Sadly, not enough time to diagnose and repair the problem was

left therefore this function has been temporarily removed. The author however believes

that it is a minor bug and the dendrogram support will be restored shortly after turning

this thesis in.

9.2 Future outlook

As for what the future holds for this program, that has been proposed in the “Future

goals” section of the “Discussion” chapter. The very distant, somewhat optimistic and

definitely ambitious endgame would be for the NSAT application to become a capable

and efficient DNA analysis tool supporting a wide range of parameters and functionality

while remaining accessible to biologists who are just regular users, not programmers or

bioinformaticians. The author's idea is to make in silico sequence as an area of

bioinformatics more accessible.

9.3 License

Usage of this software and its source code is governed by the MIT license.

The MIT License

Copyright (c) 2018 Matěj Nemec

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the "Software"), to deal in the Software

without restriction, including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons

to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

80

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

81

Literature used

A. PRAY, Leslie, 2008. Discovery of DNA Structure and Function: Watson and

Crick. Nature [online]. 2008(1), 1-1 [cit. 2018-05-16]. Dostupné z:

https://www.nature.com/scitable/nated/article?action=showContentInPopup&contentPK

=397

ALTSCHUL, Stephen F. a Bruce W. ERICKSON, 1986. Optimal sequence

alignment using affine gap costs. Bulletin of Mathematical Biology [online]. 48(5-6),

603-616 [cit. 2018-05-17]. DOI: 10.1007/BF02462326. ISSN 0092-8240. Dostupné z:

http://link.springer.com/10.1007/BF02462326

ALTSCHUL, Stephen F., Warren GISH, Webb MILLER, Eugene W. MYERS a

David J. LIPMAN, 1990. Basic local alignment search tool. Journal of Molecular

Biology [online]. 215(3), 403-410 [cit. 2018-05-17]. DOI: 10.1016/S0022-

2836(05)80360-2. ISSN 00222836. Dostupné z:

http://linkinghub.elsevier.com/retrieve/pii/S0022283605803602

A-T DNA base pair, 2007. In: Commons.wikimedia.org [online]. online: Wiki [cit.

2018-08-17]. Dostupné z:

https://commons.wikimedia.org/wiki/File:AT_DNA_base_pair.svg

Bioinformatics and molecular evolution, 2005. 2005. Oxford: Blackwell Publishing.

ISBN 14-051-3802-5.

BLAST® Command Line Applications User Manual [online], 2008. 2008(1), 1-200

[cit. 2018-05-17]. Dostupné z: https://www.ncbi.nlm.nih.gov/books/NBK279682/

BOUVIER, Thierry a Paul A DEL GIORGIO, 2003. Factors influencing the

detection of bacterial cells using fluorescence in situ hybridization (FISH): A

quantitative review of published reports. FEMS Microbiology Ecology [online]. 44(1),

3-15 [cit. 2018-05-17]. DOI: 10.1016/S0168-6496(02)00461-0. ISSN 01686496.

Dostupné z: https://academic.oup.com/femsec/article-lookup/doi/10.1016/S0168-

6496(02)00461-0

Central dogma of molecular biology, 2013. In: MMG 233 2013 Genetics &

Genomics Wiki [online]. [cit. 2018-05-17]. Dostupné z:

https://vignette.wikia.nocookie.net/mmg-233-2014-genetics-

genomics/images/6/66/Central-dogma.png/revision/latest?cb=20140901203620

COMPEAU, Phillip a Pavel PEVZNER, 2015. Bioinformatics algorithms: an active

learning approach. 2nd Edition. La Jolla, CA: Active Learning Publishers. ISBN 978-

099-0374-619.

82

DNA 3' 5' end [online], 2013. In: . [cit. 2018-05-16]. Dostupné z:

https://dlc.dcccd.edu/images/biology/lesson3/phosphodiester_linkages_model.jpg

DNA structure detail, b.r. In: Https://ptetchem.wordpress.com [online]. [cit. 2018-

05-16]. Dostupné z: http://3.bp.blogspot.com/-K4VKM6UVP3A/Tke2H-

FtlxI/AAAAAAAABM4/y8LRnu9xf8Y/s1600/DNA+backbone1.jpg

EDITED BY MARKUS SCHMIDT., , 2012. Synthetic biology industrial and

environmental applications. 1. Hoboken: Wiley-Blackwell. ISBN 978-352-7659-265.

FASTA format - NCBI [online], b.r. [cit. 2018-05-16]. Dostupné z:

https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_

TYPE=BlastHelp

G-C DNA bae pair, 2010. In: Commons.wikimedia.org [online]. online: Wiki [cit.

2018-08-17]. Dostupné z:

https://commons.wikimedia.org/wiki/File:GC_DNA_base_pair.svg

HEATHER, James M. a Benjamin CHAIN, 2016. The sequence of sequencers: The

history of sequencing DNA. Genomics [online]. 107(1), 1-8 [cit. 2018-05-16]. DOI:

10.1016/j.ygeno.2015.11.003. ISSN 08887543. Dostupné z:

http://linkinghub.elsevier.com/retrieve/pii/S0888754315300410

IUPAC-IUB COMM. ON BIOCHEM. NOMENCL, , 2002. Abbreviations and

symbols for nucleic acids, polynucleotides, and their constituents. Biochemistry

[online]. 9(20), 4022-4027 [cit. 2018-05-16]. DOI: 10.1021/bi00822a023. ISSN 0006-

2960. Dostupné z: http://pubs.acs.org/doi/abs/10.1021/bi00822a023

Jspecies, 2009. Jspecies [online]. imedea: imedea [cit. 2018-05-16]. Dostupné z:

http://imedea.uib-csic.es/jspecies

JspeciesWS [online], 2015. Ribohost: Ribohost [cit. 2018-05-16]. Dostupné z:

http://jspecies.ribohost.com/jspeciesws

KIMSEY, Isaac J., Eric S. SZYMANSKI, Walter J. ZAHURANCIK et al., 2018.

Dynamic basis for dG•dT misincorporation via tautomerization and ionization. Nature

[online]. 554(7691), 195-201 [cit. 2018-08-15]. DOI: 10.1038/nature25487. ISSN 0028-

0836. Dostupné z: http://www.nature.com/doifinder/10.1038/nature25487

KLAPPENBACH, Joel, Johan GORIS, Peter VANDAMME, Tom COENYE,

Konstantinos KONSTANTINIDIS a James TIEDJE, 2007. DNA–DNA hybridization

values and their relationship to whole-genome sequence similarities. International

Journal of Systematic and Evolutionary Microbiology [online]. 57(1), 81-91 [cit. 2018-

05-16]. ISSN 1466-5026. Dostupné z:

http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.64483-0#tab2

83

KONSTANTINIDIS, K. T. a J. M. TIEDJE, 2005b. Towards a Genome-Based

Taxonomy for Prokaryotes. Journal of Bacteriology [online]. 187(18), 6258-6264 [cit.

2018-08-13]. DOI: 10.1128/JB.187.18.6258-6264.2005. ISSN 0021-9193. Dostupné z:

http://jb.asm.org/cgi/doi/10.1128/JB.187.18.6258-6264.2005

KONSTANTINIDIS, K. a J. TIEDJE, 2005a. Genomic insights that advance the

species definition for prokaryotes. Proceedings of the National Academy of Sciences

[online]. 102(7), 2567-2572 [cit. 2018-05-16]. DOI: 10.1073/pnas.0409727102. ISSN

0027-8424. Dostupné z: http://www.pnas.org/cgi/doi/10.1073/pnas.0409727102

LAND, Miriam, Loren HAUSER, Se-Ran JUN et al., 2015. Insights from 20 years

of bacterial genome sequencing [online]. 15(2), 141-161 [cit. 2018-05-16]. DOI:

10.1007/s10142-015-0433-4. ISSN 1438-793X. Dostupné z:

http://link.springer.com/10.1007/s10142-015-0433-4

LOCEY, Kenneth J. a Jay T. LENNON, 2016. Scaling laws predict global

microbial diversity. Proceedings of the National Academy of Sciences [online]. 113(21),

5970-5975 [cit. 2018-05-16]. DOI: 10.1073/pnas.1521291113. ISSN 0027-8424.

Dostupné z: http://www.pnas.org/lookup/doi/10.1073/pnas.1521291113

MCLEAN, Phil, 2004. BLAST: Basic Local Alignment Search Tool. Colorado

State University lecture [online]. 1-17 [cit. 2018-05-17]. Dostupné z:

https://www.ndsu.edu/pubweb/~mcclean/plsc411/Blast-explanation-lecture-and-

overhead.pdf

MOORE, W., E. STACKEBRANDT, O. KANDLER et al., 1987. Report of the Ad

Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. International

Journal of Systematic and Evolutionary Microbiology [online]. 37(4), 463-464 [cit.

2018-05-16]. DOI: 10.1099/00207713-37-4-463. ISSN 1466-5026. Dostupné z:

http://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-37-4-

463

MYERS, Eugene W. a Webb MILLER, 1988. Optimal alignments in linear space.

Bioinformatics [online]. 4(1), 11-17 [cit. 2018-05-17]. DOI:

10.1093/bioinformatics/4.1.11. ISSN 1367-4803. Dostupné z:

https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/4.1.11

NAGEL, Christian, 2009. C# 2008: programujeme profesionálně. 2008. Brno:

Computer Press. Programujeme profesionálně. ISBN 978-80-251-2401-7.

NEEDLEMAN, Saul B. a Christian D. WUNSCH, 1970. A general method

applicable to the search for similarities in the amino acid sequence of two proteins.

Journal of Molecular Biology [online]. 48(3), 443-453 [cit. 2018-07-20]. DOI:

84

10.1016/0022-2836(70)90057-4. ISSN 00222836. Dostupné z:

http://linkinghub.elsevier.com/retrieve/pii/0022283670900574

NISHIDA, Hiromi, 2012. Comparative Analyses of Base Compositions, DNA

Sizes, and Dinucleotide Frequency Profiles in Archaeal and Bacterial Chromosomes and

Plasmids. International Journal of Evolutionary Biology [online]. 2012, 1-5 [cit. 2018-

05-17]. DOI: 10.1155/2012/342482. ISSN 2090-8032. Dostupné z:

https://www.hindawi.com/archive/2012/342482/

PEARSON, William R., 2002. Selecting the Right Similarity-Scoring Matrix.

Current Protocols in Bioinformatics [online]. Hoboken, NJ, USA, 1(1), 351-359 [cit.

2018-08-15]. DOI: 10.1002/0471250953.bi0305s43. ISBN 9780471250951. Dostupné

z: http://doi.wiley.com/10.1002/0471250953.bi0305s43

RICHTER, M. a R. ROSSELLO-MORA, 2009. Shifting the genomic gold standard

for the prokaryotic species definition. Proceedings of the National Academy of Sciences

[online]. 106(45), 19126-19131 [cit. 2018-05-16]. DOI: 10.1073/pnas.0409727102.

ISSN 0027-8424. Dostupné z: http://www.pnas.org/cgi/doi/10.1073/pnas.0906412106

ROSSELLÓ-MÓRA, Ramon a Rudolf AMANN, 2015. Past and future species

definitions for Bacteria and Archaea. Systematic and Applied Microbiology [online].

38(4), 209-216 [cit. 2018-05-16]. DOI: 10.1016/j.syapm.2015.02.001. ISSN 07232020.

Dostupné z: http://linkinghub.elsevier.com/retrieve/pii/S0723202015000223

ROSSELLÓ-MÓRA, Ramon, Mercedes URDIAIN a Arantxa LÓPEZ-LÓPEZ,

2011. DNA–DNA Hybridization. Taxonomy of Prokaryotes. Elsevier, 325-347.

Methods in Microbiology. DOI: 10.1016/B978-0-12-387730-7.00015-2. ISBN

9780123877307. Dostupné také z:

http://linkinghub.elsevier.com/retrieve/pii/B9780123877307000152

SCHBATH, SOPHIE, BERNARD PRUM a ELISABETH DE TURCKHEIM,

1995. Exceptional Motifs in Different Markov Chain Models for a Statistical Analysis

of DNA Sequences. Journal of Computational Biology [online]. 2(3), 417-437 [cit.

2018-05-17]. DOI: 10.1089/cmb.1995.2.417. ISSN 1066-5277. Dostupné z:

http://www.liebertonline.com/doi/abs/10.1089/cmb.1995.2.417

SMITH, T.F. a M.S. WATERMAN, 1981. Identification of common molecular

subsequences. Journal of Molecular Biology [online]. 1981(1), 195-197 [cit. 2018-05-

17]. DOI: 10.1016/0022-2836(81)90087-5. ISSN 00222836. Dostupné z:

https://www.sciencedirect.com/science/article/pii/0022283681900875?via%3Dihub

STACKEBRANDT, E. a B. GOEBEL, 1994. Taxonomic Note: A Place for DNA-

DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition

in Bacteriology. International Journal of Systematic and Evolutionary Microbiology

[online]. 44(4), 846-849 [cit. 2018-05-16]. DOI: 10.1099/00207713-44-4-846. ISSN

85

1466-5026. Dostupné z:

http://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-44-4-

846

TEELING, Hanno, Anke MEYERDIERKS a BAUER, 2004. Environmental

Microbiology [online]. 6(9) [cit. 2018-05-17]. DOI: 10.1111/j.1462-2920.2004.00624.x.

ISSN 1462-2912.

VARGHESE, Neha J., Supratim MUKHERJEE, Natalia IVANOVA, Konstantinos

T. KONSTANTINIDIS, Kostas MAVROMMATIS, Nikos C. KYRPIDES a Amrita

PATI, 2015. Microbial species delineation using whole genome sequences. Nucleic

Acids Research [online]. 43(14), 6761-6771 [cit. 2018-08-13]. DOI:

10.1093/nar/gkv657. ISSN 0305-1048. Dostupné z:

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv657

ZVELEBIL, Marketa J. a Jeremy O. BAUM, 2008. Understanding bioinformatics.

1. New York: Garland Science. ISBN 08-153-4024-9.

